Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists create new atomic X-ray laser

A powerful X-ray laser pulse from SLAC National Accelerator Laboratory's Linac Coherent Light Source comes up from the lower-left corner  (green) and hits a neon atom (center). 
Illustration by Gregory M. Stewart/SLAC
A powerful X-ray laser pulse from SLAC National Accelerator Laboratory's Linac Coherent Light Source comes up from the lower-left corner (green) and hits a neon atom (center).

Illustration by Gregory M. Stewart/SLAC

Abstract:
Lab scientists and international collaborators have created the shortest, purest X-ray laser pulses ever achieved, fulfilling a 45-year-old prediction and ultimately opening the door to new medicines, devices and materials.

Scientists create new atomic X-ray laser

Livermore, CA | Posted on January 26th, 2012

The researchers, reporting today (Jan. 26) in Nature, aimed radiation from the Linac Coherent Light Source (LCLS), located at the Stanford Linear Accelerator Center (SLAC), at a cell containing neon gas, setting off an avalanche of X-ray emissions to create a new "atomic X-ray laser."

"X-rays give us a penetrating view into the world of atoms and molecules," said physicist Nina Rohringer, a former LLNL postdoc, now a group leader at Max Planck Society's Advanced Study Group. She collaborated with researchers from SLAC, LLNL and Colorado State University.

Livermore scientists include Rich London, Felice Albert, Jim Dunn, Alex Graf, Randy Hill and Stefan Hau-Riege.

The new laser fulfills a 1967 prediction, which proposed that X-ray lasers could be made by first removing inner electrons from atoms and then inducing electrons to fall from higher to lower energy levels, releasing a single color of light in the process. But until 2009, when LCLS turned on, no X-ray sources were powerful enough to create this type of laser.

To make the atomic X-ray laser, LCLS's powerful X-ray pulses -- each a billion times brighter than any available before -- knocked electrons out of the inner shells of many of the neon atoms. When other electrons fell in to fill the holes, about one in 50 atoms responded by emitting a so-called hard X-ray, which has a very short wavelength. Those X-rays then stimulated neighboring neon atoms to emit more X-rays, creating a domino effect that amplified the laser light 200 million times.

"This work presents a big advance in the quest for shorter wavelength lasers," London said. "In addition, the demonstration of the neon X-ray laser provides a very sensitive test of the physics of intense X-ray interaction with atoms. By comparing theoretical modeling to the observed output signals, one can pin down the basic ultrafast processes occurring in the region where the LCLS beam interacts with the gas."

In the future, Rohringer says she will try to create even shorter-pulse, higher-energy atomic X-ray lasers using oxygen, nitrogen or sulfur gases.

The research was funded by LLNL's Laboratory Research and Development program. LDRD is used to fund creative basic and applied research activities in areas aligned with the Lab's principal missions.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M Stark
LLNL
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Imaging

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project