Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Catching cancer with carbon nanotubes: New device to test blood can spot cancer cells, HIV on the fly

These posts, made of carbon nanotubes, can trap cancer cells and other tiny objects as they flow through a microfluidic device. Each post is 30 microns in diameter.
Image: Brian Wardle
These posts, made of carbon nanotubes, can trap cancer cells and other tiny objects as they flow through a microfluidic device. Each post is 30 microns in diameter.
Image: Brian Wardle

Abstract:
A Harvard bioengineer and an MIT aeronautical engineer have created a new device that can detect single cancer cells in a blood sample, potentially allowing doctors to quickly determine whether cancer has spread from its original site.

Catching cancer with carbon nanotubes: New device to test blood can spot cancer cells, HIV on the fly

Cambridge, MA | Posted on March 28th, 2011

The microfluidic device, described in the March 17 online edition of the journal Small, is about the size of a dime, and could also detect viruses such as HIV. It could eventually be developed into low-cost tests for doctors to use in developing countries where expensive diagnostic equipment is hard to come by, says Mehmet Toner, professor of biomedical engineering at Harvard Medical School and a member of the Harvard-MIT Division of Health Sciences and Technology.

Toner built an earlier version of the device four years ago. In that original version, blood taken from a patient flows past tens of thousands of tiny silicon posts coated with antibodies that stick to tumor cells. Any cancer cells that touch the posts become trapped. However, some cells might never encounter the posts at all.

Toner thought if the posts were porous instead of solid, cells could flow right through them, making it more likely they would stick. To achieve that, he enlisted the help of Brian Wardle, an MIT associate professor of aeronautics and astronautics, and an expert in designing nano-engineered advanced composite materials to make stronger aircraft parts.

Out of that collaboration came the new microfluidic device, studded with carbon nanotubes, that collects cancer cells eight times better than the original version.

Captured by nanotubes

Circulating tumor cells (cancer cells that have broken free from the original tumor) are normally very hard to detect, because there are so few of them — usually only several cells per 1-milliliter sample of blood, which can contain tens of billions of normal blood cells. However, detecting these breakaway cells is an important way to determine whether a cancer has metastasized.

"Of all deaths from cancer, 90 percent are not the result of cancer at the primary site. They're from tumors that spread from the original site," Wardle says.

When designing advanced materials, Wardle often uses carbon nanotubes — tiny, hollow cylinders whose walls are lattices of carbon atoms. Assemblies of the tubes are highly porous: A forest of carbon nanotubes, which contains 10 billion to 100 billion carbon nanotubes per square centimeter, is less than 1 percent carbon and 99 percent air. This leaves plenty of space for fluid to flow through.

The MIT/Harvard team placed various geometries of carbon nanotube forest into the microfluidic device. As in the original device, the surface of each tube can be decorated with antibodies specific to cancer cells. However, because the fluid can go through the forest geometries as well as around them, there is much greater opportunity for the target cells or particles to get caught.

The researchers can customize the device by attaching different antibodies to the nanotubes' surfaces. Changing the spacing between the nanotube geometric features also allows them to capture different sized objects — from tumor cells, about a micron in diameter, down to viruses, which are only 40 nm.

The researchers are now beginning to work on tailoring the device for HIV diagnosis. Toner's original cancer-cell-detecting device is now being tested in several hospitals and may be commercially available within the next few years.

Rashid Bashir, director of the Micro and Nanotechnology Laboratory at the University of Illinois at Urbana-Champaign, says that the ability to filter specific particles, cells or viruses from a blood sample so they can be analyzed is a critical step towards creating handheld diagnostic devices.

"Anything you can do to improve capture efficiency, or anything novel you can do to get the particles to interact with a surface more effectively, will help with sample preparation," says Bashir, who was not part of the research team.

####

For more information, please click here

Contacts:
MIT news
77 Massachusetts Avenue, Room 11-400
Cambridge, MA 02139-4307
Tel 617.253.2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Microfluidics/Nanofluidics

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Stretching diamond for next-generation microelectronics January 5th, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Jet-printing microfluidic devices on demand November 6th, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

Conductive, durable coatings with graphene nanotubes now available to the Turkish market June 3rd, 2021

Thin is now in to turn terahertz polarization: Rice lab’s discovery of ‘magic angle’ builds on its ultrathin, highly aligned nanotube films May 20th, 2021

Optically active defects improve carbon nanotubes: Heidelberg scientists achieve defect control with a new reaction pathway April 9th, 2021

Nanomedicine

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases July 4th, 2021

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Arrowhead Presents Preclinical Data on ARO-DUX4 at FSHD Society International Research Congress June 25th, 2021

Discoveries

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Announcements

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Research partnerships

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

New family of atomic-thin electride materials discovered June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project