Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A greener way to grow carbon nanotubes

Graphic: Christine Daniloff
Graphic: Christine Daniloff

Abstract:
Study suggests new way for manufacturers to minimize environmental impact of carbon nanotube production

By Morgan Bettex, MIT News Office

A greener way to grow carbon nanotubes

Cambridge, MA | Posted on November 11th, 2010

Given their size, strength and electrical properties, carbon nanotubes — tiny, hollow cylinders made of carbon atoms — hold promise for a range of applications in electronics, medicine and other fields. Despite industrial development of nanotubes in recent years, however, very little is known about how they form or the environmental impacts of their manufacture.

It turns out that one process commonly used to produce carbon nanotubes, or CNTs, may release several hundred tons of chemicals, including greenhouse gases and hazardous air pollutants, into the air each year. In a paper published last week on the ACS Nano website, the researchers report that in experiments, removing one step in that process — a step that involves heating carbon-based gases and adding key reactive "ingredients" — reduced emissions of harmful by-products at least tenfold and, in some cases, by a factor of 100. It also cut the amount of energy used in the process by half.

"We were able to do all of this and still have good CNT growth," says Desiree Plata, who led the research between 2007 and 2009 as a doctoral student in MIT's joint program with the Woods Hole Oceanographic Institution. Now a visiting assistant professor in MIT's Departments of Aeronautics and Astronautics and Civil and Environmental Engineering (CEE), Plata collaborated on the paper with several MIT and University of Michigan researchers, including Philip Gschwend, Ford Professor of Engineering in CEE, and John Hart, a mechanical engineering professor at the University of Michigan. The study is part of a long-term effort to change the approach to material development so that environmental chemists work with the young CNT industry to develop methods to prevent or limit undesirable environmental consequences.

In their study, Plata and her colleagues analyzed a common CNT manufacturing process known as catalytic chemical vapor deposition. In this method, manufacturers combine hydrogen with a "feedstock gas," such as methane, carbon monoxide or ethylene. They then heat the combination in a reactor that contains a metal catalyst like nickel or iron, which then forms CNTs. The problem is that once the CNTs form, unreacted compounds (up to 97 percent of the initial feedstock) are often released into the air.

Turning off the heat

In a custom-made laboratory-scale reactor, the researchers heated hydrogen and ethylene, which is commonly used in high-volume CNT manufacturing, and then delivered it to a metal catalyst. They found that more than 40 compounds formed, including greenhouse gases like methane and toxic air pollutants like benzene.

The researchers suspected that not all of those compounds were essential for growing CNTs, and they knew that heating the feedstock gas plays a critical role in creating the dangerous compounds. So they combined unheated ethylene and hydrogen with several of the 40 compounds, one by one, to see which combination of compounds led to the best growth. They observed that certain alkynes, or molecules that have at least two carbon atoms stuck together with three distinct bonds, produced the best growth, while other compounds that are undesirable by-products, such as methane and benzene, did not.

Plata and her colleagues accomplished their dramatic reduction in both harmful emissions and energy consumption by impinging room-temperature alkynes, with ethylene and hydrogen, directly onto the metal catalyst, without heat. They also learned that they could reduce the amount of ethylene and hydrogen used by about 20 and 40 percent, respectively, and still achieve the same rate and quality of CNT growth. Plata says that while the results of lab experiments are hard to generalize, in a market that is expected to reach several billion dollars within several years, these changes could translate into "significant cost savings" for manufacturers.

Industry reaction

Although it's too soon for manufacturers to adopt the method presented in the paper, David Lashmore, vice president and chief technology officer of Concord, N.H.-based Nanocomp Technologies, says the method is something his company is willing to try as it looks for ways to minimize the environmental effects of its production process. "This is of high interest to us and could have a broad impact on our process economics," he says.

Plata points out that the MIT study analyzed only one of several feedstock gases used to make CNTs, and that the same analysis needs to be done for the others. But for her own part, she is now focusing on how CNTs form, trying to determine the precise interaction of the metal catalyst and the hydrocarbons in this process. Knowing the catalyst's role could help researchers manipulate CNTs' formation atom by atom — much more precisely than they can now, she says.

The study was funded by the Woods Hole Oceanographic Institution, the Arunas and Pam Chesonis Ignition Grant via the MIT Earth Systems Initiative and the MIT Martin Society of Fellows for Sustainability, the Nanomanufacturing Program of the National Science Foundation, Lockheed Martin Nanosystems and the University of Michigan Department of Mechanical Engineering and College of Engineering.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanocomp Technologies

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project