Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Will T-Shirts Soon Power Cell Phones?

Doctoral student Lewis Gomez de Arco holds a plastic sheet with graphene layered on it.  Photo/Eric Mankin
Doctoral student Lewis Gomez de Arco holds a plastic sheet with graphene layered on it. Photo/Eric Mankin

Abstract:
A USC team has produced flexible transparent carbon atom films that the researchers say have great potential for a new breed of solar cells.

Will T-Shirts Soon Power Cell Phones?

Los Angeles, CA | Posted on July 29th, 2010

"Organic photovoltaic [OPV] cells have been proposed as a means to achieve low-cost energy due to their ease of manufacture, light weight and compatibility with flexible substrates," wrote Chongwu Zhou, a professor of electrical engineering at the USC Viterbi School of Engineering, in a paper recently published in the journal ACS Nano.

The technique described in the article describes progress toward a novel OPV cell design that has significant advantages, particularly in the area of physical flexibility.

A critical aspect of any OPV photo-electronic device is a transparent conductive electrode through which light can couple with active materials to create electricity. The new work indicates that graphene, a highly conductive and highly transparent form of carbon made up of atoms-thick sheets of carbon atoms, has high potential to fill this role.

While graphene's existence has been known for decades, it has only been studied extensively since 2004 because of the difficulty of manufacturing it in high quality and in quantity.

The Zhou lab reported the large-scale production of graphene films by chemical vapor deposition three years ago. In this process, the USC engineering team creates ultra-thin graphene sheets by first depositing carbon atoms in the form of graphene films on a nickel plate from methane gas.

The researchers then lay down a protective layer of thermo plastic over the graphene layer and then dissolve the nickel underneath in an acid bath. In the final step, they attach the plastic-protected graphene to a very flexible polymer sheet, which can be incorporated into a OPV cell.

The USC team has produced graphene/polymer sheets ranging in sizes up to 150 square centimeters that in turn can be used to create dense arrays of flexible OPV cells.

These OPV devices convert solar radiation to electricity, but not as efficiently as silicon cells. The power provided by sunlight on a sunny day is about 1,000 watts per meter square.

"For every 1,000 watts of sunlight that hits a one square meter area of the standard silicon solar cell, 14 watts of electricity will be generated," said Lewis Gomez De Arco, a doctoral student and a member of the team that built the graphene OPVs. "Organic solar cells are less efficient; their conversion rate for that same 1,000 watts of sunlight in the graphene-based solar cell would be only 1.3 watts."

But what graphene OPVs lack in efficiency, they can potentially more than make up for in lower price and greater physical flexibility. Gomez De Arco thinks that it may eventually be possible to run printing presses laying extensive areas covered with inexpensive solar cells, much like newspaper presses print newspapers.

"They could be hung as curtains in homes or even made into fabric and be worn as power-generating clothing. I can imagine people powering their cellular phone or music/video device while jogging in the sun," he said.

The USC researchers say graphene OPVs would be a major advance in at least one crucial area over a rival OPV design, one based on Indium-Tin-Oxide (ITO).

In the USC team's tests, ITO cells failed at a very small angle of bending, while the graphene-based cells remained operational after repeated bending at much larger stress angles. This would give the graphene solar cells a decided advantage in some uses, including the printed-on-fabric applications proposed by the USC team.

Zhou and the other researchers on the USC team — which included Yi Zhang, Cody W. Schlenker, Koungmin Ryu and professor Mark E. Thompson in addition to Gomez de Arco — are excited by the potential for this technology.

Their paper concludes that their approach constitutes a significant advance toward the production of transparent conductive electrodes in solar cells.

####

For more information, please click here

Contacts:

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project