Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Upgrade to Advanced Photon Source announced by DOE

The Advanced Photon Source (APS) is a unique national source of high-energy X-rays—the brightest X-ray source in the Western Hemisphere—for scattering, spectroscopy and imaging studies.
The Advanced Photon Source (APS) is a unique national source of high-energy X-rays—the brightest X-ray source in the Western Hemisphere—for scattering, spectroscopy and imaging studies.

Abstract:
First phase of planning and development approved

Upgrade to Advanced Photon Source announced by DOE

Argonne, IL | Posted on May 4th, 2010

Advances in energy conservation, better materials for frontier technologies and new economic engines, and breakthroughs in understanding diseases: These are just a few of the potential discoveries, both basic and applied, to be enabled by an upgrade to the Advanced Photon Source(APS)at the U.S. Department of Energy's (DOE) Argonne National Laboratory.

DOE today announced formal approval for conceptual design of the APS upgrade, the first in a series of major milestones that the project must meet under DOE's project management regimen.

"This is a major step in securing America's scientific future by taking an already premier facility and preparing it to meet the next generation of scientific needs and discoveries," said Argonne Director Eric Isaacs.

The upgrade will be more cost-effective than building a new facility. It will make revolutionary improvements in performance needed to address the sustainable energy and health research needs of the future. The upgrade will also add new X-ray facilities, make existing X-ray facilities 10 to 100 times more powerful and almost double the number of experiments that can be carried out in a year. In addition, the upgrade is expected to create new high-tech jobs.

Researchers using the APS have been at the forefront of scientific discovery since its creation in the 1990s. At present, the APS serves the experimental needs of more than 3,500 researchers each year, more than any other scientific user facility in the Western Hemisphere. The Advanced Photon Source uses high-energy X-ray beams to peer deep into the atomic and molecular structures of materials and living organisms as small as a few nanometers. The APS has been providing the U.S. scientific community with the expertise and research tools that enable breakthroughs such as improved battery technologies, an unprecedented understanding of how engine fuel injectors function, treatment for the human immunodeficiency virus and other diseases, the creation of new nanomaterials, and advances in nanobiology, among other developments.

"Data collated at the APS was used by the scientists who won the 2009 Nobel Prize in chemistry," said Don Levy, Vice President for Research and for National Laboratories at the University of Chicago. UChicago Argonne LLC manages Argonne for DOE. "A new world of discoveries will be possible because of the upgrade," he said.

"The scientific vision which drove upgrade planning is the need to image real materials under real conditions in real time, with resolution far better than is available today," said APS Director and Argonne Associate Lab Director for Photon Sciences J. Murray Gibson."This is key to solving the materials needs for sustainable energy and understanding the hierarchy of life to combat disease. The upgrade will allow the Advanced Photon Source to meet the needs of today's and tomorrow's scientists without the need for building an entirely new facility."

The announcement, at the APS users meeting at Argonne, was made by Dr. Pedro Montano, Director of the Scientific User Facilities Division of the Office of Basic Energy Sciences within DOE's Office of Science, which supports the APS.

The Upgrade at a Glance

Accelerator-based X-ray source innovations: Record brightness for penetrating X-rays at 25 keV and above using long straight sections, higher beam current and pioneering superconducting undulators; transverse radio-frequency deflection cavities to generate unique high-repetition-rate, 1-picosecond-duration X-ray pulses.

Unique X-ray capabilities and new beamlines: Long imaging beamlines, nanometer focusing optics for penetrating X-rays, short-pulse X-rays, high magnetic fields, inelastic scattering, phase contrast and nanobeams in realistic environments. These capabilities will answer key scientific questions and will result in ultrahigh phase contrast of more than three orders of magnitude, ultrahigh energy resolution in the range of microvolts, better than a nanometer spatial resolution and time resolution to a picosecond.

Optimized and expanded capabilities: The APS drove developments that require new approaches today, but which could not be anticipated in the 1990s. Demand for increasing capability and scope requires a new access model that supports world-leading, one-of-a-kind instruments, a change from the collaborative-access-team model of twentieth-century light sources. All APS beamlines will be optimized in the upgrade with higher performance to match scientific demand, almost doubling experimental capacity. Normal operating hours will be sustained with relatively minor APS user disruption during the upgrade project.

Videos:

APS Upgrade: www.youtube.com/watch?v=tqV5FC5I44U

Energy - www.youtube.com/watch?v=G1hHx-e8PZI&feature=player_embedded

Materials - www.youtube.com/watch?v=FYyEdiwJrAM&feature=channel

Health/Life Science - www.youtube.com/watch?v=onkAH_Ri1eI&feature=channel


####

About Argonne National Laboratory
The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

For more information, please click here

Contacts:
Brock Cooper
(630) 252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project