Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Podcast: Nanotech method to study cell detachment could lead to improved cancer therapies

Peter Searson
Peter Searson

Abstract:
"…We know that processes like cell detachment are important in cancer metastasis, where cells become detached from tumors…" Peter Searson

Podcast: Nanotech method to study cell detachment could lead to improved cancer therapies

Baltimore, MD | Posted on December 2nd, 2009

Cancer spreads from organ to organ when cells break free from one site and travel to another. Understanding this process, known as metastasis, is critical for developing ways to prevent the spread and growth of cancer cells. Peter Searson, Reynolds Professor of Materials Science and Engineering in the Whiting School of Engineering and director of the Institute for NanoBioTechnology, led a team of engineers who have developed a method to specifically measure detachment in individual cells.

The method, which uses lab-on-a-chip technology, allows researchers to observe and record the exact point when a cell responds to electrochemical cues in its environment and releases from the surface upon which it is growing. Better knowledge of the biochemistry of cell detachment could point the way to better cancer therapies. In this "Great Ideas" podcast, Elizabeth Tracey, communications associate for the School of Medicine, interviews Searson about this current research.

To listen: inbt.jhu.edu/wp-content/uploads/2009/08/searsonfinal06011.mp3

Related links:

You can watch a video and read more about Searson's method of studying cell detachment here: inbt.jhu.edu/lab-on-a-chip-shows-how-cells-break-free/2009/03/18

Peter Searson's INBT profile page: inbt.jhu.edu/research/faculty/profile/peter-searson

This podcast was originally posted to the Johns Hopkins University "Great Ideas" web page. To view the original posting: http://www.jhu.edu/news/podcasts/

####

About Johns Hopkins
The Institute for NanoBioTechnology at Johns Hopkins University brings together 193 researchers from: Bloomberg School of Public Health, Krieger School of Arts and Sciences, School of Medicine, Applied Physics Laboratory, and Whiting School of Engineering to create new knowledge and new technologies at the interface of nanoscience and medicine.

For more information, please click here

Contacts:
For media inquiries contact:
Mary Spiro

410 516-4802

Copyright © Johns Hopkins

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanobiotechnology

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project