Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle-delivered "Suicide" Genes Slowed Ovarian Tumor Growth

Abstract:
Potential late-stage ovarian cancer therapy; currently none available
Diphtheria-encoding genes delivered to tumor site by nanoparticles
Laboratory research; possible human trials about 18 months away

Nanoparticle-delivered "Suicide" Genes Slowed Ovarian Tumor Growth

Philadelphia, PA | Posted on August 3rd, 2009

Nanoparticle delivery of diphtheria toxin-encoding DNA selectively expressed in ovarian cancer cells reduced the burden of ovarian tumors in mice, and researchers expect this therapy could be tested in humans within 18 to 24 months, according to a report in Cancer Research, a journal of the American Association for Cancer Research.

Although early stage ovarian cancer can be treated with a combination of surgery followed by chemotherapy, there are currently no effective treatments for advanced ovarian cancer that has recurred after surgery and primary chemotherapy. Therefore, the majority of treated early stage cancers will relapse.

"This report is definitely a reason to hope. We now have a potential new therapy for the treatment of advanced ovarian cancer that has promise for targeting tumor cells and leaving healthy cells healthy," said lead researcher Janet Sawicki, Ph.D., a professor at the Lankenau Institute for Medical Research.

Sawicki and colleagues at the Massachusetts Institute of Technology evaluated the therapeutic efficacy of a cationic biodegradable beta-amino ester polymer as a vector for the nanoparticle delivery of a DNA encoding diphtheria toxin suicide gene. These nanoparticles were injected into mice with primary or metastatic ovarian tumors.

To test the efficacy of this technique, the researchers measured tumor volume before and after treatment. They found that while treated tumors increased 2-fold, this was significantly less than the between 4.1-fold and 6-fold increase in control mice.

Furthermore, four of the treated tumors failed to grow at all, while all control tumors increased in size. Administration of nanoparticles to three different ovarian cancer mouse models prolonged lifespan by nearly four weeks and suppressed tumor growth more effectively, and with minimal non-specific cytotoxicity, than in mice treated with clinically relevant doses of cisplatin and paclitaxel.

Edward Sausville, M.D., Ph.D., an associate editor of Cancer Research and associate director for clinical research at the Greenebaum Cancer Center at the University of Maryland, said this report illustrates significant progress in targeted therapy.

"In oncology we have been studying ways to kill tumors for a long time, but much of this has run up against the real estate principle of location, location, location," he said. "In other words, an effective therapy is not effective if it cannot get to the target."

Sausville said a major accomplishment of this research is the multiple ways it can target ovarian cancer cells, as scientists were able to deliver diphtheria toxin genes, using a nanoparticle, to the actual tumor site (peritoneum) with a basis for selective activity in the cancer cells (how the toxin genes were regulated once inside the cells).

"A real plus of a cancer therapy like this is not just the functionality of the nanoparticle construct molecule, but the ability to deliver the toxin to the tumor cells," said Sausville, who agrees that inception of clinical trials could be just 18 months away.

####

About American Association for Cancer Research
The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, AACR is the world's oldest and largest professional organization dedicated to advancing cancer research. The membership includes more than 28,000 basic, translational and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and nearly 90 other countries. The AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants. The AACR Annual Meeting attracts more than 17,000 participants who share the latest discoveries and developments in the field. Special conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment and patient care. The AACR publishes six major peer-reviewed journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; Cancer Epidemiology, Biomarkers & Prevention; and Cancer Prevention Research. The AACR also publishes CR, a magazine for cancer survivors and their families, patient advocates, physicians and scientists. CR provides a forum for sharing essential, evidence-based information and perspectives on progress in cancer research, survivorship and advocacy.

For more information, please click here

Contacts:
Media Contact:
Jeremy Moore
267-646-0557

Copyright © American Association for Cancer Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives 1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project