Home > Press > Carnegie Mellon's Katayun Barmak Develops Novel
![]() |
Katayun Barmak, a professor of materials science and engineering |
Abstract:
Carnegie Mellon University's Katayun Barmak, with the help of Microscopy Lab Supervisor Thomas Nuhfer, is one of the first materials scientists worldwide to successfully map polycrystalline structures on a nanoscale.
This mapping ability has come at the same time that Barmak, a professor of materials science and engineering, and her colleagues found that physical properties of some structures change at the nanoscale.
"This is a revolutionary research finding that will forever change the way we map polycrystalline structures of all the materials we use daily in our lives," said Greg Rohrer, head of Carnegie Mellon's Materials Science and Engineering Department.
Polycrystalline structures are made up of three-dimensional patterns of atoms, ions and molecules called crystals, which take on a range of orientations in space. It is the homogeneous solid crystallites and the boundaries between them that Barmak is mapping.
"I'm on the verge of harnessing the 'Wild West' as I drill down to analyze crystalline materials a thousand times smaller than the diameter of a human eyelash," Barmak said.
Her research, for example, shows that the minute grain boundaries of crystalline materials can obstruct the flow of an electric charge when subject to an electric field.
"Because we can now monitor these changes in structure and form at the nanoscale level, we can begin to see how metallic elements like copper can be tailored to be an even better conductive agent," said Barmak, who is also a member of the university's Materials Research, Science and Engineering Center.
Industry analysts report that better understanding of nanoscale structures can help make superior materials that are more economical to produce.
"I can see major impacts from our work for a whole host of engineered systems that harness nanotechnology," Barmak added. She said some examples of those important systems include silicon chips and data storage systems, photovoltaics and fuel cells, and medical devices and drug delivery systems.
####
About Carnegie Mellon University
Carnegie Mellon University is a global research university of more than 10,000 students, 70,000 alumni, and 4,000 faculty and staff. Recognized for its world-class arts and technology programs, collaboration across disciplines and innovative leadership in education, Carnegie Mellon is consistently a top-ranked university.
For more information, please click here
Contacts:
Chriss Swaney
412-268-5776
Copyright © Carnegie Mellon University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Possible Futures
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Chip Technology
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |