Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gel-Based Glue Fastens Snails to Wet Surfaces, Model for Surgical Adhesive

Abstract:
A species of slug (Arion subfuscus) produces a defensive gel it can chemically convert into a remarkably strong glue. Similar gel-based glues attach some snails firmly onto slippery rocks; tools are needed to pry them off. The tenacity of these glues on wet surfaces is difficult to match with artificial adhesives. Following up on their original research identifying the key characteristics controlling this transition from a water-based gel into a powerful yet flexible adhesive, researchers at Ithaca College have shed new light on the nature of the adhesive mechanism.

Gel-Based Glue Fastens Snails to Wet Surfaces, Model for Surgical Adhesive

Ithaca, NY | Posted on May 2nd, 2009

"The strength of the natural adhesive comes from the way long, rope-like polymers chemically tie together, or cross link, at certain points," said Andrew Smith, associate professor of biology. "In our previous studies we had shown that metals were essential to the formation of cross-links. This is unusual, as some combination of electrostatic and hydrophobic interactions are commonly responsible for the formation of cross-links in other gels."

Electrostatic interactions occur when a negatively charged group on one polymer is attracted to a positively charged group on another. Hydrophobic interactions take place when regions of a polymer don't interact with water, so they stick together to avoid contacting water.

"We used several approaches to break these interactions, and the treatments that normally disrupt them had no impact on the glue's mechanical integrity or ability to set," Smith said. "Our study conclusively showed that electrostatic and hydrophobic interactions do not play any detectable role. Removing metals alone caused the glue to fall apart. This was exciting and unexpected."

Removing the metals, however, didn't completely break down the gel. The researchers discovered that a specific protein was responsible for forming strong cross-links that were unaffected when the metals were removed after the glue set. But when metals were removed before the glue set, the cross-links didn't form.
"This is a very unusual material we're looking at," Smith said. "By discovering that metals are central to forming cross-links, we know there are several intriguing mechanisms that could hold the glue together."

For example, zinc, calcium and iron ions can bind very strongly to several molecules at the same time, thereby effectively joining them together. Iron and copper can also catalyze reactions that trigger strong cross-link formation.

"The significance of this is that we are much farther along the path to our goal of identifying how the glue works so that synthetic mimics can be made," Smith said.

The study, "Robust Cross-links in Molluscan Adhesive Gels: Testing for Contributions from Hydrophobic and Electrostatic Interactions," was published in "Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology."

####

For more information, please click here

Contacts:
Keith Davis
assistant director
media relations
Ithaca College
(607) 274-1153

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project