Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanocups brim with potential

Abstract:
Light-bending metamaterial could lead to superlenses, invisibility cloaks.

Researchers at Rice University have created a metamaterial that could light the way toward high-powered optics, ultra-efficient solar cells and even cloaking devices.

Nanocups brim with potential

Houston, TX | Posted on March 16th, 2009

Naomi Halas, an award-winning pioneer in nanophotonics, and graduate student Nikolay Mirin created a material that collects light from any direction and emits it in a single direction. The material uses very tiny, cup-shaped particles called nanocups.

In a paper in the February issue of the journal Nano Letters, co-authors Halas and Mirin explain how they isolated nanocups to create light-bending nanoparticles.

In earlier research, Mirin had been trying to make a thin gold film with nano-sized holes when it occurred to him the knocked-out bits were worth investigating. Previous work on gold nanocups gave researchers a sense of their properties, but until Mirin's revelation, nobody had found a way to lock ensembles of isolated nanocups to preserve their matching orientation.

"The truth is a lot of exciting science actually does fall in your lap by accident," said Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "The big breakthrough here was being able to lift the nanocups off of a structure and preserve their orientation. Then we could look specifically at the properties of these oriented nanostructures."

Mirin's solution involved thin layers of gold deposited from various angles onto polystyrene or latex nanoparticles that had been distributed randomly on a glass substrate. The cups that formed around the particles - and the dielectric particles themselves - were locked into an elastomer and lifted off of the substrate. "You end up with this transparent thing with structures all oriented the same way," he said.

In other words, he had a metamaterial, a substance that gets its properties from its structure and not its composition. Halas and Mirin found their new material particularly adept at capturing light from any direction and focusing it in a single direction.

Redirecting scattered light means none of it bounces off the metamaterial back into the eye of an observer. That essentially makes the material invisible. "Ideally, one should see exactly what is behind an object," said Mirin.

"The material should not only retransmit the color and brightness of what is behind, like squid or chameleons do, but also bend the light around, preserving the original phase information of the signal."

Halas said the embedded nanocups are the first true three-dimensional nanoantennas, and their light-bending properties are made possible by plasmons. Electrons inside plasmonic nanoparticles resonate with input from an outside electromagnetic source in the same way a drop of water will make ripples in a pool. The particles act the same way radio antennas do, with the ability to absorb and emit electromagnetic waves that, in this case, includes visible wavelengths.

Because nanocup ensembles can focus light in a specific direction no matter where the incident light is coming, they make pretty good candidates for, say, thermal solar power. A solar panel that doesn't have to track the sun yet focuses light into a beam that's always on target would save a lot of money on machinery.

Solar-generated power of all kinds would benefit, said Halas. "In solar cells, about 80 percent of the light passes right through the device. And there's a huge amount of interest in making cells as thin as possible for many reasons."

Halas said the thinner a cell gets, the more transparent it becomes. "So ways in which you can divert light into the active region of the device can be very useful. That's a direction that needs to be pursued," she said.

Using nanocup metamaterial to transmit optical signals between computer chips has potential, she said, and enhanced spectroscopy and superlenses are also viable possibilities.

"We'd like to implement these into some sort of useful device," said Halas of her team's next steps. "We would also like to make several variations. We're looking at the fundamental aspects of the geometry, how we can manipulate it, and how we can control it better.

"Probably the most interesting application is something we not only haven't thought of yet, but might not be able to conceive for quite some time."

The paper can be found at pubs.acs.org/doi/abs/10.1021/nl900208z?prevSearch=mirin&searchHistoryKey.

####

About Rice University
Rice is a private, independent university dedicated to the "advancement of letters, science, and art." Occupying a distinctive, tree-shaded, nearly 300-acre campus only a few miles from downtown Houston, Rice attracts a diverse group of highly talented students with a range of academic studies that includes humanities, social sciences, natural sciences, engineering, architecture, music, and business management (graduate study only). The school offers students the advantage of forging close relationships with members of the faculty and the option of tailoring graduate and undergraduate studies to their specific interests. Students each year are drawn to this coed, nonsectarian university by the creative approaches it historically has taken to higher education.

Contacts:
Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project