Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ‘Nanostitching’ could strengthen airplane skins, more

Schematics showing carbon nanotubes bridging the gap between plies of an advanced composite. 
CREDIT: Courtesy Wardle lab, MIT
Schematics showing carbon nanotubes bridging the gap between plies of an advanced composite.
CREDIT: Courtesy Wardle lab, MIT

Abstract:
MIT engineers are using carbon nanotubes only billionths of a meter thick to stitch together aerospace materials in work that could make airplane skins and other products some 10 times stronger at a nominal increase in cost.

‘Nanostitching’ could strengthen airplane skins, more

Cambridge, MA | Posted on March 4th, 2009

Moreover, advanced composites reinforced with nanotubes are also more than one million times more electrically conductive than their counterparts without nanotubes, meaning aircraft built with such materials would have greater protection against damage from lightning, said Brian L. Wardle, the Charles Stark Draper Assistant Professor in the Department of Aeronautics and Astronautics.

Wardle is lead author of a theoretical paper on the new nanotube-reinforced composites that will appear in the Journal of Composite Materials (jcm.sagepub.com). He also described the work as keynote speaker at a Society of Plastics Engineers conference this week.

The advanced materials currently used for many aerospace applications are composed of layers, or plies, of carbon fibers that in turn are held together with a polymer glue. But that glue can crack and otherwise result in the carbon-fiber plies coming apart. As a result, engineers have explored a variety of ways to reinforce the interface between the layers by stitching, braiding, weaving or pinning them together.

All of these processes, however, are problematic because the relatively large stitches or pins penetrate and damage the carbon-fiber plies themselves. "And those fiber plies are what make composites so strong," Wardle said.

So Wardle wondered whether it would make sense to reinforce the plies in advanced composites with nanotubes aligned perpendicular to the carbon-fiber plies. Using computer models of how such a material would fracture, "we convinced ourselves that reinforcing with nanotubes should work far better than all other approaches," Wardle said. His team went on to develop processing techniques for creating the nanotubes and for incorporating them into existing aerospace composites, work that was published last year in two separate journals.

How does nanostitching work? The polymer glue between two carbon-fiber layers is heated, becoming more liquid-like. Billions of nanotubes positioned perpendicular to each carbon-fiber layer are then sucked up into the glue on both sides of each layer. Because the nanotubes are 1000 times smaller than the carbon fibers, they don't detrimentally affect the much larger carbon fibers, but instead fill the spaces around them, stitching the layers together.

"So we're putting the strongest fibers known to humankind [the nanotubes] in the place where the composite is weakest, and where they're needed most," Wardle said. He noted that these dramatic improvements can be achieved with nanotubes comprising less than one percent of the mass of the overall composite. In addition, he said, the nanotubes should add only a few percent to the cost of the composite, "while providing substantial improvements in bulk multifunctional properties."

Wardle's co-authors on the Journal of Composite Materials paper are Joaquin Blanco, a visiting graduate student in the Department of Aeronautics and Astronautics, Enrique J. Garcia SM '06, and Roberto Guzman deVilloria, a postdoctoral associate in the department.

This research was sponsored by MIT's Nano-Engineered Composite aerospace STructures (NECST) Consortium ( necst.mit.edu ).

Written by Elizabeth A. Thomson, MIT News Office

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office

617-258-5402

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project