Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Swedish scientists make breakthrough in nanowire growth control

Abstract:
Scientists in Sweden have discovered new ways to control the growth and structure of nanowires at the single-atom level. Their findings, which provide major insights into materials physics, have come out of the NODE (' Nanowire-based one-dimensional electronics') project, funded with approximately EUR 9.5 million under the EU's Sixth Framework Programme (FP6). The study is published in the January issue of Nature Nanotechnology.

Swedish scientists make breakthrough in nanowire growth control

Sweden | Posted on January 5th, 2009

Nanowires, also known as 'quantum wires,' are single strips of atoms that are produced only in laboratories. Among other things, semiconductor nanowires show promise for nanoelectronics, as they might be used to link miniscule components within extremely small circuits in a 'molecular computer'.

Most semiconductor materials used to make nanowires develop irregularities and faults as they grow. These defects have a negative impact on the material's electronic and optical properties. In this latest research, scientists used Indium Arsenide (InAs), a valuable material in nanoelectonics, electron transport and spintronics, to determine how the structure of nanowires could be more carefully controlled.

'Two of the key parameters needed to control the crystal structure are nanowire diameter and the temperature at which they are fabricated,' explained co-author Kimberly Dick at Lund University in Sweden. 'But there are in total at least 10 to 12 different parameters that must be controlled when producing the nanowires.'

The researchers grew nanowires typically 10 to 100 nanometres in diameter and a few micrometers long. They did this by 'baking' the material in its gas form, using microscopic gold 'seeds' to start the wire. The diameter of the wire was controlled by changing the size of the seed. They successfully demonstrated that it is possible to control the growth of the nanowires, thereby drastically reducing irregularities.

In addition, they created different crystal structures of the same material by varying the temperature between 400ºC and 480ºC. By selectively tuning the crystal structure of InAs, they were able to consistently fabricate very strong 'superlattices' within single nanowires.

The scientists showed that it is possible to fabricate defect-free nanowires, and that one may alternate between different crystal structures along the length of a single nanowire. The new techniques, which the authors believe can be applied to other semiconductor materials, open the door for researchers to develop new functions for nanowires.

The study provides experimental evidence for a theory that has been widely discussed. 'Although a diameter-dependent crystal structure has been proposed by many authors,' the study reads, 'this is the first time that such an effect has been experimentally demonstrated, with a high level of control.' Electron microscopy images show that the arrangement of atoms in the nanowire crystal exactly matches theoretical simulations.

According to Professor Lars Samuelson, also of Lund University, 'The results achieved here establish our position in this area of science and technology and give our ambitions an increased credibility.' The authors hope their findings may lead to developments in light-emission and solar cell applications.

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project