Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Make Breakthrough in the Production of Double-Walled Carbon Nanotubes

Above is a visualization of the structure of carbon nanotubes. Double-sided carbon nanotubes are highly prized for their use in solar cells and other applications, but until now, creating a supply of just double-sided carbon nanotubes -- instead of a mix of single- and multi-sided ones--was a challenge. A team of researchers at Northwestern University has announced a breakthrough technique that allows the double-sided tubes to be efficiently separated from the other types.

Credit: Courtesy of Mark Hersam, Northwestern University
Above is a visualization of the structure of carbon nanotubes. Double-sided carbon nanotubes are highly prized for their use in solar cells and other applications, but until now, creating a supply of just double-sided carbon nanotubes -- instead of a mix of single- and multi-sided ones--was a challenge. A team of researchers at Northwestern University has announced a breakthrough technique that allows the double-sided tubes to be efficiently separated from the other types.

Credit: Courtesy of Mark Hersam, Northwestern University

Abstract:
Northwestern University team develops new method to reliably produce and sort out double-walled carbon nanotubes; discovery could lower the cost of this dynamic material

Researchers Make Breakthrough in the Production of Double-Walled Carbon Nanotubes

Arlington, VA | Posted on December 14th, 2008

In recent years, the possible applications for double-walled carbon nanotubes have excited scientists and engineers, particularly those working on developing renewable energy technologies. These tiny tubes, just two carbon atoms thick, are thin enough to be transparent, yet can still conduct electricity. This combination makes them well-suited for advanced solar panels, sensors and a host of other applications.

Up until now, the problem with double-walled carbon nanotubes has been being able to produce a homogeneous supply of them. When double-walled carbon nanotubes are synthesized, the process also creates many of the single- and multi-walled variety. Given their small size, sorting the valuable double-walled tubes from the other types has posed a real challenge.

In a paper published today in the online edition of the journal Nature Nanotechnology, two researchers from Northwestern University outline a new process for efficiently gathering up these coveted double-walled carbon nanotubes. For more information on the team's work, go to www.northwestern.edu/newscenter/stories/2008/12/nanotube.html.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Dana W. Cruikshank
NSF
(703) 292-8070


Megan Fellman
Northwestern University
(847) 491-3115


Program Contacts
LaVerne D. Hess
NSF
(703) 292-4937

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View an interview with Mark C. Hersam, professor of materials science and engineering at Northwestern University.

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project