Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A spiral of spins: The complex arrangement of spins in a magnetic oxide gives rise to a magneto-electric effect

Figure 1: The spiral magnetic structure in Gd1-xTbxMnO3 as viewed looking at the a-b plane and the b-c plane. The red arrows denote the direction of the spins on the Mn sites. The green octahedra indicate the Mn sites, each of which is surrounded by 6 oxygen sites.
Figure 1: The spiral magnetic structure in Gd1-xTbxMnO3 as viewed looking at the a-b plane and the b-c plane. The red arrows denote the direction of the spins on the Mn sites. The green octahedra indicate the Mn sites, each of which is surrounded by 6 oxygen sites.

Abstract:
In a magneto-electric material, a magnetic field can induce a ferroelectric moment—a displacement of the ions that creates an electric field. Similarly, an electric field can induce a change in the material's magnetic structure. These materials have caught the attention of technologists who are interested in developing them as future data storage devices: it is much easier to make a compact storage system that can be switched electrically, rather than with the current system of magnetic read/write heads.

A spiral of spins: The complex arrangement of spins in a magnetic oxide gives rise to a magneto-electric effect

Japan | Posted on December 11th, 2008

Unfortunately, relatively few magneto-electric materials exist, which is why Daisuke Okuyama of the RIKEN Advanced Science Institute, Wako, and Yuichi Yamasaki of the University of Tokyo and colleagues are aiming to better understand the connection between ferroelectricity and magnetic structure at the microscopic level in TbMnO3. TbMnO3 is one of the most well-studied magneto-electric materials.

At low temperatures, a magnetic field can rotate the ferroelectric polarization from pointing along the c-axis of this material to pointing along the a-axis. To really understand this effect, however, the researchers needed a microscopic picture that explains why magnetism and ferroelectricity are connected. This in turn required knowing what the magnetic structure looked like—both in zero and high magnetic fields.

Okuyama, Yamasaki and colleagues were confronted by the problem that the best experimental technique for resolving a material's magnetic structure—neutron diffraction—cannot be performed at high magnetic fields. They therefore devised a clever alternative1: they studied a similarly structured material, Gd1-xTbxMnO3, which they believe has the same magnetic structure in zero magnetic field that TbMnO3 has at high magnetic field.

After careful analysis of over 150 neutron diffraction peaks, the team has determined that at temperatures close to ~20 K (~ -253 °C) the manganese (Mn) spins in Gd1-xTbxMnO3 spiral in the a-b crystallographic plane (Fig. 1). The team has also shown that the formation of this spiral-like magnetic phase occurs at the same temperature that the material develops a ferroelectric moment. Based on comparisons of this spin structure with that of TbMnO3 at zero field, in which the spins spiral in the b-c plane, the team argues that the electric polarization rotates 90 degrees in TbMnO3 in the presence of magnetic field because the field changes the sense of rotation of the spiral spin structure.

Armed with the knowledge of how a magnetic field changes the electric polarization in TbMnO3, Okuyama says that: "The control of the magnetic structure with an electric stimulus is our next target."
Reference

1. Yamasaki, Y., Sagayama, H., Abe, N., Arima, T., Sasai, K., Matsuura, M., Hirota, K., Okuyama, D., Noda, Y. & Tokura, Y. Cycloidal spin order in the a-axis polarized ferroelectric phase of orthorhombic perovskite manganite. Physical Review Letters 101, 097204 (2008).

The corresponding author for this highlight is based at the RIKEN Cross-Correlated Materials Research Group

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project