Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NASA Plans Test of 'Electronic Nose' on International Space Station

Abstract:
NASA astronauts on space shuttle Endeavour's STS-126 mission will install an instrument on the International Space Station that can "smell" dangerous chemicals in the air. Designed to help protect crew members' health and safety, the experimental "ENose" will monitor the space station's environment for harmful chemicals such as ammonia, mercury, methanol and formaldehyde.

NASA Plans Test of 'Electronic Nose' on International Space Station

PASADENA, CA | Posted on November 19th, 2008

The ENose fills the long-standing gap between onboard alarms and complex analytical instruments. Air-quality problems have occurred before on the International Space Station, space shuttle and Russian Space Station Mir. In most cases, the chemicals were identified only after the crew had been exposed to them, if at all. The ENose, which will run continuously and autonomously, is the first instrument on the station that will detect and quantify chemical leaks or spills as they happen.

"The ENose is a 'first-responder' that will alert crew members of possible contaminants in the air and also analyze and quantify targeted changes in the cabin environment," said Margaret A. Ryan, the principal investigator of the ENose project at NASA's Jet Propulsion Laboratory, or JPL, in Pasadena, Calif. JPL built and manages the device.

Station crew members will unpack the ENose on Dec. 9 to begin the instrument's six-month demonstration in the crew cabin. If the experiment is successful, the ENose might be used in future space missions as part of an automated system to monitor and control astronauts' in-space environments.

"This ENose is a very capable instrument that will increase crew awareness of the state of their air quality," said Carl Walz, an astronaut and director of NASA's Advanced Capabilities Division, part of the Exploration System Mission Directorate, which funds the ENose. "Having experienced an air-quality issue during my Expedition 4 mission on the space station, I wish I had the information that this ENose will provide future crews. This technology demonstration will provide important information for environmental control and life-support system designers for the future lunar outpost."

Specifically, the shoebox-sized ENose contains an array of 32 sensors that can identify and quantify several organic and inorganic chemicals, including organic solvents and marker chemicals that signal the start of electrical fires. The ENose sensors are polymer films that change their electrical conductivity in response to different chemicals. The pattern of the sensor array's response depends on the particular chemical types present in the air.

The instrument can analyze volatile aerosols and vapors, help monitor cleanup of chemical spills or leaks, and enable more intensive chemical analysis by collecting raw data and streaming it to a computer at JPL's ENose laboratory. The instrument has a wide range of chemical sensitivity, from fractional parts per million to 10,000 parts per million. For all of its capabilities, the ENose weighs less than nine pounds and requires only 20 watts of power.

The ENose is now in its third generation. The first ENose was tested during a six-day demonstration on the STS-95 shuttle mission in 1998. That prototype could detect 10 compounds, but could not analyze data immediately. The second-generation ENose could detect, identify and quantify 21 different chemicals. It was extensively ground-tested. The third-generation ENose includes data-analysis software to identify and quantify the release of chemicals within 40 minutes of detection. While it will look for 10 chemical types in this six-month experiment, the new ENose can be trained to detect many others.

For more information about the ENose and the Advanced Environmental Monitoring and Control Project, visit:

aemc.jpl.nasa.gov/instruments/enose.cfm

For more information about NASA's exploration program, visit:

www.nasa.gov/exploration

For more information about the International Space Station, visit:

www.nasa.gov/station

####

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Aerospace/Space

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project