Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Do nanoparticles affect the health of the soil ecosystem?

Abstract:
New research reveals that many microorganisms, including bacteria and protozoa, show little sensitivity to fullerene nanoparticles applied to soil samples. However, fast-growing bacteria decreased in number and the genetic diversity of bacteria and protozoa altered slightly. This could affect the bottom of the food chain, which may have long-term implications for the overall health of the soil ecosystem.

Do nanoparticles affect the health of the soil ecosystem?

Europe | Posted on October 18th, 2008

Nanotechnology collectively describes technology and science which utilises nanoscale particles. Despite their benefits, introduction of nanoparticles into the environment might have significant impacts as they may be extremely resistant to degradation and have the potential to accumulate in bodies of water or in soil.

The study observed the behaviour of C60 fullerenes, also know as 'Bucky Balls', in soil. These are a type of carbon nanomaterial currently used in some cosmetics with expected future use in pharmaceuticals. Other types of carbon nanomaterials have a promising future for use in a range of environmental applications, including environmental sensors, renewable energy technologies and pollution prevention strategies. Laboratory tests on C60 fullerenes provide a good indicator of how other types of carbon nanomaterials will behave in the environment, as they all display similar physical and chemical characteristics.

In water, nanoparticles cluster together to form larger particles, aggregates, which may behave differently when released into the environment. In order to investigate the impact of fullerenes on soil microorganisms, the researchers prepared suspensions of aggregated C60 fullerenes, applied them to soil at varying concentrations and assessed how they affected the growth and diversity of soil dwelling microorganisms over time.

The study demonstrated that microbial biomass and respiration rate (an indication of the activity of soil microorganisms) were unaffected by nanoparticle treatments. Soil protozoans, such as amoeba, were slightly sensitive to nanoparticle applications. However, fast growing bacteria decreased up to 4 fold in number. Protozoa feed on bacteria, so a reduction in bacterial biomass could disrupt the bottom of the food chain in the soil ecosystem. Additionally, the researchers noticed a very small, but persistent, change in the genetic diversity of both the bacterial and protozoan community, caused by the fullerenes.

It is possible that the water-repelling nature of fullerenes means that they limit bacterial growth by adsorbing vitamins and minerals, which are essential for bacterial growth, from the soil.

Interactions between microorganisms in the soil ecosystem are very complicated and the impact of fullerenes on fast-growing bacteria may affect the balance of these interactions and in turn the overall health and function of the soil. Researchers recommend that further studies of the long-term fate of fullerene nanoparticles are needed before they are released into the environment. In addition there are many different types of nanoparticles so the effects of all types should be considered when setting environmental regulations for their release.

####

About European Commission, Environment Directorate-General (DG)
The main role of the European Commission's Environment Directorate-General (DG) is to initiate and define new environmental legislation and to ensure that agreed measures are put into practice in the EU Member States. The Environment DG is based in Brussels and has around 700 staff.

For more information, please click here

Contacts:
European Commission
Environment DG
B - 1049 Brussels
Belgium

Copyright © European Commission, Environment Directorate-General (DG)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project