Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Clever catalysts promise commercial advantage

October 8th, 2008

Clever catalysts promise commercial advantage

Abstract:
Smarter catalysts that could help the chemical industry to cut costs and beat ever-more stringent government regulations were showcased at CPhI, the pharmaceutical ingredient trade show, held in Frankfurt, Germany, 30 September to 2 October.

Staying one step ahead of cheaper drug manufacturers in India and China was an important consideration for Japanese firm Sumitomo Chemical.

Their asymmetric catalysts include the phosphorus and nitrogen-based PINAP ligands, developed with Erick Carreira at ETH Zurich in Switzerland, and a series of organocatalysts developed with Yoshiji Takemoto at Kyoto University in Japan.

'If normal technology can give an intermediate in 10 steps, but our catalysts can cut this to two or three, or improves enantioselectivity, this helps us to compete with low labour costs,' Sumitomo's team leader of pharmaceuticals research, Kazuo Murakami, told Chemistry World.

Meanwhile, tighter government controls on industry's use of lead have left the chemical industry searching for alternatives. Germany's BASF unveiled palladium-nanoparticle based catalysts to replace the Lindlar catalyst, a mixture of palladium and lead used to selectively hydrogenate alkynes into cis alkenes. The high surface area of the replacement palladium nanoparticles means only around 0.5 weight per cent of the metal is used, 10 times less than the traditional Lindlar catalyst.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project