Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Columbia Engineers Prove Graphene is the Strongest Material

A representation of a diamond tip with a two nanometer radius indenting into a single atomic sheet of graphene
A representation of a diamond tip with a two nanometer radius indenting into a single atomic sheet of graphene

Abstract:
Research scientists at Columbia University's Fu Foundation School of Engineering and Applied Science have achieved a breakthrough by proving that the carbon material graphene is the strongest material ever measured.

Columbia Engineers Prove Graphene is the Strongest Material

New York, NY | Posted on July 22nd, 2008

Graphene holds great promise for the development of nano-scale devices and equipment. It consists of a single layer of graphite atoms arranged in a hexagonal lattice, similar to a honeycomb. As a two-dimensional material, every atom is exposed to the surface. It forms the basis of graphite fibers used in tennis racquets and other durable products. When rolled, very useful tiny tubes called nanotubes can be fabricated.

Until now, graphene's estimated strength, elasticity and breaking point were based on complex computer modeling theories. Laboratory tests had been stymied because of two major experimental challenges: the complexity in mechanically grasping graphene specimens to measure their elongation under force, and the difficulty of making specimens small enough to be free of imperfections.

"Our team sidestepped the size issue by creating samples small enough to be defect-free," said Columbia Professor Jeffrey Kysar.

The studies were conducted by postdoctoral researcher Changgu Lee and graduate student Xiaoding Wei, in the research groups of mechanical engineering professors Kysar and James Hone. The findings are published in the latest issue of Science.

"Our research establishes graphene as the strongest material ever measured, some 200 times stronger than structural steel," Hone said. "It would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap."

The team culled microscopic graphene samples, in which every single atom is on the surface, from larger graphite crystals. These newly created, two-dimensional samples were then placed over small circular holes etched in silicon to create miniature circular films only one atom thick. The graphene adhered to the silicon because of the attraction between their atoms.

The scientists tested the strength of the films by pushing on their centers with a diamond-tipped atomic force microscope with a radius of 20 billionths of a meter. The absence of flaws in the samples, each about one micron in diameter (one percent of the width of a human hair), enabled the scientists to test both elasticity and breaking point properties. The scientists collected more than 67 test values on 23 separate films.

"Until now, there's been no definitive set of experiments that people can use to validate or invalidate the computer simulations that model the mechanical properties of materials at strains literally up to the breaking point, " said Kysar. "It's important because this is a fundamental parameter for all types of materials.

"The Air Force wants to introduce new materials within a five-year cycle, versus 20 years now, so being able to predict the mechanical behavior of how a new material will fail under the most extreme circumstances will make it much less expensive and less time consuming to develop, and with better materials for everyday life."

"Though the strength of any practical material is still limited by many types of defects, the research can lead to a better understanding of the behavior of materials at extreme conditions, such as [those that] exist near the tip of a crack," said Hone. "This can in turn lead to far more robust materials, ones more resistant to oxidation and fatigue. Achieving a better understanding of how materials fail allows us to design and create newer, safer materials, and ultimately to build a safer, more efficient environment for us."

####

For more information, please click here

Copyright © Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project