Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Controlling the Size of Nanoclusters: First Step in Making New Catalysts

Michael White and Melissa Patterson review an image of a molybdenum sulfide nanocluster.
Michael White and Melissa Patterson review an image of a molybdenum sulfide nanocluster.

Abstract:
Researchers from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Stony Brook University have developed a new instrument that allows them to control the size of nanoclusters — groups of 10 to 100 atoms — with atomic precision. They created a model nanocatalyst of molybdenum sulfide, the first step in developing the next generation of materials to be used in hydrodesulfurization, a process that removes sulfur from natural gas and petroleum products to reduce pollution.

Controlling the Size of Nanoclusters: First Step in Making New Catalysts

UPTON, NY | Posted on July 14th, 2008

As reported in the July 9, 2008 online edition of the Journal of Physical Chemistry C, the scientists made size-selected molybdenum sulfide nanoclusters as gaseous ions, and then gently deposited the clusters on a gold surface. The nanoclusters interact weakly with the gold support and therefore remain intact.

"With this new instrument, we can control how many and what type of atoms are in a nanocluster," said Brookhaven chemist Michael White, the principal author of the paper. "This knowledge enables us to make nanoclusters with predetermined size, structure and chemical composition, all which are important for the design of new catalysts."

Currently, molybdenum sulfide nanoparticles are used for hydrodesulfurization and other chemical processes, but it is not known what size is most active or how the reactions occur on small particles. The ability to make model nanocatalysts containing molybdenum sulfide particles of variable size and chemical makeup will allow White and coworkers to understand how current catalysts work and help design the next generation of catalysts.

In the current research, the scientists explored the chemical reactivity of a very stable or "magic" cluster of four atoms of molybdenum and six atoms of sulfur deposited on a gold surface. This small nanocluster is thought to be prototypical of active catalyst particles because all the molybdenum metal atoms are exposed and therefore can react with other molecules. Exploring larger and more reactive nanoclusters will be the next step.

"This was a study to test the capabilities of the newly built instrument," White said. "Now we can do further studies with different nanoclusters to find those that are most reactive and therefore best suited as models for making the most efficient nanocatalysts."

Melissa Patterson, a W. Burghardt Turner Fellow at Stony Brook University and a coauthor of the paper, will give a talk on related work titled "Size-selected deposition of transition metal sulfides: Insights toward model systems in catalysis" at the American Chemical Society's national meeting in Philadelphia on August 19, 2008, at 1:20 p.m.

This research was funded by DOE's Office of Science, Basic Energy Sciences, through the Nanoscale Science, Engineering and Technology initiative.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Diane Greenberg
(631) 344-2347

or
Mona S. Rowe
(631) 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Michael White's work is described in the June 2008 edition of 'Take 5', Brookhaven's monthly video magazine. Real Player is required to view this video. > PLAY video.

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project