Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Amorphous materials : solids that flow like liquids

© Julie Goyon, LOF, Bordeaux (This image can be obtained from the CNRS photo library, phototheque@cnrs-bellevue.fr).

Cross-section of a dense emulsion, made up of numerous oil droplets of various sizes.
© Julie Goyon, LOF, Bordeaux (This image can be obtained from the CNRS photo library, phototheque@cnrs-bellevue.fr).

Cross-section of a dense emulsion, made up of numerous oil droplets of various sizes.

Abstract:
Scientists at CNRS-affiliated laboratories(1) in Bordeaux, Lyon and Paris have provided the first proof that amorphous materials, also known as soft glasses, deform and flow through a collective movement of their particles. These materials (which include chocolate mousse, shaving cream, mayonnaise, metallic glasses, granular materials and mud) are amorphous solids, in other words, they are resistant like solids but, like liquids, lack a crystalline structure. This discovery, published in the July 3, 2008 issue of the journal Nature, should make it possible to better understand deformation and fracturing in metallic glasses(2) and the spreading of thin layers of fragile materials (such as face creams) used in the cosmetics, food-processing and lubrication industries.

Amorphous materials : solids that flow like liquids

France | Posted on July 7th, 2008

An amorphous solid is a liquid that does not flow: its atomic structure is disordered like that of a liquid but it is rigid and holds its shape like a solid. Amorphous materials include silica glass and a multitude of other materials of different origins, such as soft glasses (like concentrated emulsions, mousses and colloidal glasses). They are often found on our kitchen tables - as mayonnaise, chocolate mousse or ketchup - or in our bathrooms in the form of various gels or beauty creams. These soft glasses are actually capable of flowing if forced: mayonnaise looks solid in a jar, but can be spread with a knife, just like liquid honey.

The nature and origin of this amorphous state, however, continues to be a scientific challenge for researchers. Do these materials deform like related crystalline solids? Or do they flow like the liquids that share their structure? The dual nature of these materials is of great value from an industrial point of view, something which led CNRS and Rhodia to take an interest in them in the joint research unit "Laboratoire du Futur." Progress has been made on multiple fronts in the last few years. Experimental and theoretical work on amorphous solids at rest has made it possible to better understand the paradoxical nature of the rigid structure of these materials: On the atomic level, their particles jam collectively, which causes their organizational structure to come to a nearly complete standstill. The link with their flow behavior, however, had not been previously established.

Scientists carried out a series of experiments using "microfluidic"(3) techniques that allowed them to observe the flow of highly concentrated emulsions in microchannels of various widths. These substances are made up of a very concentrated assemblage of silicon oil droplets suspended in a solvent(4) that makes it possible to view the interior of the emulsion under a microscope. This is a typical example of a soft glassy material: the droplets are completely disordered yet the emulsion does not flow unless a sufficiently strong force is applied. By analyzing the flow of this material in channels of micrometer scale width, the researchers were able to identify that the intrinsic flow properties of the material (its "rheology") depend on its confinement, in other words, the fact that it is being forced to flow in a narrow channel. Surprisingly, in certain situations, the material appears to be even more fluid when it is confined.



Detailed analysis of these properties reveals that large-scale movements of flowing particles take place collectively (here, the particles are drops of oil that move as a block). This cooperativity effect is, however, very different from that which has been observed in the collective dynamic of amorphous materials that are not flowing, thus opening new theoretical questions.

This study clarifies the flow properties of amorphous solids and should help improve modeling of these complex phenomena. The collective nature identified in the flow differs from usual proposed descriptions. One objective is to be able to better predict and understand the tribological properties of thin films as well as the way glass breaks.

Notes :

1) Laboratoire du Futur (LOF) (Rhodia/CNRS/Université Bordeaux 1), Laboratoire Gulliver (Ecole supérieure de physique chimie industrielle de Paris/CNRS), Laboratoire de physique de la matière condensée et nanostructures (LPMCN) (CNRS/Université Lyon 1) and Physics Department, Technical University of Münich, Institut Navier (a federated research structure covering three research units in the field of Mechanics and Physics of Materials and Structures, with each unit belonging to one or more of the following establishments: CNRS/École Nationale des Ponts et Chaussées (ENPC)/Laboratoire Central des Ponts et Chaussées (LCPC)/Université de Marne la Vallée (UMLV)).
2) Metallic glasses are new amorphous materials composed of metallic alloys with disordered atomic structures.
3) These techniques involve making fluids flow in channels whose width is on the order of several micrometers.
4) Made up of a mixture of water and glycerin.
Références :

« Spatial cooperativity in soft glassy flows », Julie Goyon, Annie Colin, Guillaume Ovarlez, Armand Ajdari & Lydéric Bocquet, Nature, vol: 454, Issue: 7200; pages: 84-87 (2008); DOI: 10.1038/nature07026

####

About CNRS
The Centre National de la Recherche Scientifique (National Center for Scientific Research) is a government-funded research organization, under the administrative authority of France's Ministry of Research.

For more information, please click here

Contacts:
Researchers
Annie Colin
05 56 46 47 14


Lyderic Bocquet
49 89 289 14 336 (Münich)


Public Information Officer
Laetitia Louis
01 44 96 51 37

Copyright © CNRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project