Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Home > Press > Caltech to use new Nanocatalyst Immobilization Technology

Caltech to use new Nanocatalyst Immobilization Technology

Posted on March 15, 2006

Over the last decade or so, a new genre of nano-sized ultra-high-surface-area catalyst particles have been developed to high degrees of efficacy. When added to polluted water (employed in-solution e.g. in-situ), these new catalysts have been shown to effect extremely rapid, complete and inexpensive catalytic destruction (chemical breakdown to benign species) of a host of approximately 50 recalcitrant, ubiquitous, and carcinogenic groundwater pollutants on the EPA-'Hotlist'. These include but are not limited to chlorinated lower alkanes, alkenes and aromatics (including PCE, TCE, cis, trans, and 1,1 DCE, and vinyl chloride, and all chlorination states of benzene and other aromatics), several THMs, DDT, Lidane, PCBs, Dioxins, TNT, NDMA, Organic Dyes, dichromates, perchlorate, a large host of pharmaceutical residuals, and other recalcitrant trace pollutants of immediate concern in our groundwater. The desire to use these highly effective catalysts for various large-scale GWR applications has been a natural consequence, but catalytic nanoparticles themselves are toxic, so their in-situ use necessitates that they in turn be completely removed from the treated water prior to it’s use. Because these particles are so small (and numerous), very robust (e.g. High-performance R.O.) operations are required to accomplish such removal, rendering the overall remediation operation much too expensive for large scale groundwater (or other) remediation operations.

Conversely, ex-situ use of nanocatalysts (immobilizing them on a ‘support’ in a batch or -more importantly- a flow-through reactor) has been stymied as well. Why? The engineering challenges inherent to immobilizing nano-sized particles for cost-effective ex-situ use (allowing scale-up for high throughput, high conversion applications like groundwater remediation) had, until recently, proven insurmountable, precluding commercialization. Until 10/04, all nano-particle immobilization technologies for continuous flow-through processing units had failed to meet the seven criteria necessary for cost-effective use in large-scale remediation operations:

  1. Complete Immobilization - no release of nanoparticles into the (product) flow.
  2. Ultra-high Nano-particle ‘Loading Densities’ within the reactor ­ high enough to fully exploit their high SA/mass ratios, or over about 25x1015 particles per cubic inch of reactor volume.
  3. High Mass-transport Efficiency
    1. Mono-disperse with Micro-homogeneity ­ catalyst particles are immobilized in an evenly-spaced three-dimensional dispersion through which the reactant flows, such that each particle receives equal exposure ­ no particle agglomeration or flow-channeling in the reactor.
    2. No particle surface coverage- nearly 100% of each catalyst particles’ surface area is directly exposed to the reactant.
  4. High Momentum-transport Efficiency - linear velocities of hundreds of ft/second can be achieved with small pressure drops, and hence with small, inexpensive pumps.
  5. Complete Scalability -systems can be scaled & configured to treat 1 gpm or 1,000,000 gpm for 99.999% conversion of even ppb-level pollutants.
  6. Thrift - the technology is inexpensive to build and operate: low Capital & Operating costs ­ no expensive medias or support structures, operation at ambient P & T, no moving parts, etc.
  7. Potential for quick regulatory-agency acceptance - safe, easily controlled operation, exposes the reactant matrix to no additional contact materials.

The new High Efficiency Nano-Catalyst Immobilization (HENCI) technology uniquely meets all the above criteria, and as such is the last piece in the puzzle for unleashing the true power of nanocatalysis to remediate our groundwaters. As such, HENCI is poised to usher in a new era in nano- and micro-catalysis marked by a leap in efficacy of dilute-reactant applications such as groundwater remediation. Detailed HENCI technology capability information, live demonstration videos, and ancillory information (including presentations to the NWRI and other agencies) is availible at

Ken Cross

Copyright © Cross Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024


Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project