Home > Press > New protocol for assessing the safety of nanomaterials
![]() |
Abstract:
A recent paper published in Nature Protocols introduces a complete and comprehensive protocol for analysing nanomaterials in humans and organisms to support the safety of these engineered small materials.
Engineered nanomaterials have the potential to revolutionise many industries, and they are used in many sectors in society, such as medicine and computing. When developing sustainable nanotechnology, safety and targeting ability are important factors. Designing safe and efficient engineered nanomaterials for different applications requires understanding of how they behave in a given system, and how they interact with their surroundings.
To assess the safety of engineered nanomaterials and to evaluate and improve their targeting ability for medical application, the researchers present a method for analysing the fate and behaviour of engineered nanomaterials in biological media, including in a single cell, a cell layer, tissue, organ and physiological media (e.g., blood, gut content, haemolymph) of different (micro)organisms, such as bacteria, animals and plants. The new protocol presents a workflow that allows researchers to determine, characterize and quantify metal-bearing nanomaterials in biological tissues and cells, and quantify their dynamic behaviour at trace-level concentrations.
Unlike previous methods, the protocol uses no fluorescent dyes or radiolabels to trace metal-bearing engineered nanomaterials in tissues and cells. The results facilitate an understanding of the biological fate of metal-bearing engineered nanomaterials and their dynamic behaviour in, e.g., human tissues.
This is the first comprehensive protocol for analysing what happens to nanoparticles in humans and organisms after use. This is an important step in understanding how nanomaterials behave, hopefully allowing nanotechnology to reach its full potential one day, Researcher and lead author Fazel Monikh from the University of Eastern Finland says.
####
For more information, please click here
Contacts:
Media Contact
Maj Vuorre
University of Eastern Finland
Office: 358-504-303-880
Expert Contact
Fazel Monikh
University of Eastern Finland
Cell: +358505281646
Copyright © University of Eastern Finland
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Possible Futures
New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023
Graphene grows and we can see it March 24th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Discoveries
New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023
Graphene grows and we can see it March 24th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Materials/Metamaterials
Graphene grows and we can see it March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
Announcements
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Safety-Nanoparticles/Risk management
Underwater movement sensor alerts when a swimmer might be drowning October 7th, 2022
Nylon cooking bags, plastic-lined cups can release nanoparticles into liquids April 22nd, 2022
No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |