Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconducting nanowire single-photon detectors: Next big thing in blood flow measurement: Novel detector system improves sensitivity for measurement of cerebral blood flow

In a new study, researchers from Massachusetts General Hospital developed a superconducting nanowire single photon detector (SNSPD)-based diffuse correlation spectroscopy (DCS) device with a high signal-to-noise ratio and high sensitivity for blood flow. This study marks one of the first-ever applications of SNSPDs in a biomedical setting. The figure shows the setup for blood flow measurement using SNSPD- and SPAD-based DCS devices.

CREDIT
Ozana et al., doi 10.1117/1.NPh.8.3.035006.
In a new study, researchers from Massachusetts General Hospital developed a superconducting nanowire single photon detector (SNSPD)-based diffuse correlation spectroscopy (DCS) device with a high signal-to-noise ratio and high sensitivity for blood flow. This study marks one of the first-ever applications of SNSPDs in a biomedical setting. The figure shows the setup for blood flow measurement using SNSPD- and SPAD-based DCS devices. CREDIT Ozana et al., doi 10.1117/1.NPh.8.3.035006.

Abstract:
In order to function properly, the brain requires a steady flow of blood through the cerebral arteries and veins, which deliver oxygen and nutrients and also remove metabolic byproducts. Therefore, cerebral blood flow is considered a vital and sensitive marker of cerebrovascular function. Optical methods offer a noninvasive approach for measuring cerebral blood flow. Diffuse correlation spectroscopy (DCS), a method gaining popularity, involves the illumination of tissues with near-infrared laser rays. The light is scattered by the movement of red blood cells and the resulting pattern formed is analyzed by a detector to determine blood flow.

Superconducting nanowire single-photon detectors: Next big thing in blood flow measurement: Novel detector system improves sensitivity for measurement of cerebral blood flow

Bellingham, WA | Posted on August 20th, 2021

The ideal operating conditions for accurate measurement are: 1) large source–detector (SD) separation (>30 mm), 2) high acquisition rates, and 3) longer wavelengths (>1000 nm). However, current DCS devices—which use single-photon avalanche photodiode (SPAD) detectors—cannot attain that ideal. Due to high signal-to-noise ratio and low photon efficiency, they cannot allow an SD separation greater than 25 mm or wavelength greater than 900 nm.

To enable the operation of DCS devices under ideal conditions, researchers from Massachusetts General Hospital, Harvard Medical School, and MIT Lincoln Laboratory recently proposed the use of superconducting nanowire single-photon detectors (SNSPDs) in DCS devices.

SNSPDs, first demonstrated 20 years ago, consist of a thin film of superconducting material with excellent single-photon sensitivity and detection efficiency. Commonly used in telecommunications, optical quantum information, and space communications, SNSPDs are seldom used in biomedicine. SNSPDs outperform SPADs in multiple parameters, such as time resolution, photon efficiency, and range of wavelength sensitivity.

To demonstrate the operational superiority of the new SNSPD-DCS system, the researchers conducted cerebral blood flow measurements on 11 participants using both SNSPD-DCS and SPAD-DCS systems provided by Quantum Opus. The SNSPD-DCS system operated at a wavelength of 1064 nm with two SNSPD detectors, whereas the SPAD-DCS system operated at 850 nm.

The SNSPD-based DCS system showed significant improvement in SNR compared to the conventional SPAD-based DCS. This improvement was attributable to two factors. First, with illumination at 1064 nm, the SNSPD detectors received seven to eight times more photons than SPAD detectors at 850 nm did. Second, SNSPD has a higher photon detection efficiency (88 percent) than SPAD's photon detection efficiency of 58 percent. While the SPAD-DCS could only allow signal acquisition at 1 Hz at 25 mm SD separation owing to low SNR, the 16 times increase in SNR for the SNSPD-DCS system allowed signal acquisition at 20 Hz at the same SD separation allowing clear detection of arterial pulses.

As cerebral blood flow sensitivity increases substantially for measurements taken at larger SD separation, the researchers also performed measurements at 35 mm SD separation. The SNSPD-DCS system recorded a 31.6 percent relative increase in blood flow sensitivity. In contrast, the SPAD-DCS system could not be operated at 35 mm SD separation because of its low SNR.

Finally, the performance of the SNSPD-DCS system was validated by measurements taken during breath-holding and hyperventilation exercises. Theoretically, blood flow increases during the first 30 seconds of breath-holding and slowly returns to normal thereafter. During hyperventilation, blood flow to the scalp increases and blood flow to the brain decreases. SNSPD-DCS measurements showed an increase of 69 percent and a decrease of 18.5 percent in relative cerebral blood flow for breath-holding and hyperventilation, respectively. These measurements are in agreement with those obtained from PET and MRI studies.

The SNSPD-DCS system facilitates higher photon collection, larger SD separations, and higher acquisition rates, leading to better accuracy. Given these advantages, this novel system may allow for a noninvasive and more precise measurement of cerebral blood flow—an important marker of cerebrovascular function—for adult clinical applications.

####

For more information, please click here

Contacts:
Daneet Steffens

Office: 360-685-5478

Copyright © SPIE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the open access article "Superconducting nanowire single-photon sensing of cerebral blood flow," by Nisan Ozana et al. Neurophotonics 8(3), 035006 (2021), doi 10.1117/1.NPh.8.3.035006:

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Superconductivity

A kagome lattice superconductor reveals a “cascade” of quantum electron states: In a rare non-magnetic kagome material, a topological metal cools into a superconductor through a sequence of novel charge density waves October 1st, 2021

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing August 13th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanomedicine

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Directly into the brain: A 3D multifunctional and flexible neural interface: Novel design of brain chip implant allows for measuring neuronal activity while simultaneously delivering drugs to the implant site October 1st, 2021

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Photonics/Optics/Lasers

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project