Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Non-linear effects in coupled optical microcavities

On the left: a spatial cross-section of the studied structure. Two optical microcavities (broad black stripes) are visible, surrounded by a multilayer Bragg mirrors. The image shows the spatial distribution of magnesium. It was obtained in a transmission electron microscope in the measurement of energy dispersion X-ray spectroscopy. On the right: angularly resolved emission spectrum of a system of two coupled optical microcavities recorded for excitation power above the polariton lasing threshold. The white lines represent the calculated polariton levels. Parametric polariton scattering is visible as bright points inside the blue rectangles. (Source: K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW)

CREDIT
K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW
On the left: a spatial cross-section of the studied structure. Two optical microcavities (broad black stripes) are visible, surrounded by a multilayer Bragg mirrors. The image shows the spatial distribution of magnesium. It was obtained in a transmission electron microscope in the measurement of energy dispersion X-ray spectroscopy. On the right: angularly resolved emission spectrum of a system of two coupled optical microcavities recorded for excitation power above the polariton lasing threshold. The white lines represent the calculated polariton levels. Parametric polariton scattering is visible as bright points inside the blue rectangles. (Source: K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW) CREDIT K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW

Abstract:
Scientists from the Faculty of Physics of the University of Warsaw demonstrated exciton-polariton lasing and parametric scattering of exciton-polaritons in a system of coupled optical microcavities. The results have been published in the prestigious journal "Nanophotonics".

Non-linear effects in coupled optical microcavities

Warsaw, Poland | Posted on August 5th, 2021

Exciton-polaritons are quasiparticles formed by a strong coupling between excitons and photons in a semiconductor. Their bosonic nature and non-linear interactions allow the observation of fascinating phenomena such as Bose-Einstein condensation of polaritons and polariton lasing, which, unlike typical lasering, occurs without occupation inversion.


Coupled microcavity systems, such as those based on two coupled optical microcavities, offer a promising multi-level platform for basic research and practical applications. The unique structure consisting of several dozen of layers with the precisely defined thickness (each with an accuracy of a few nanometers) was fabricated in the MBE laboratory at the Faculty of Physics, University of Warsaw.



In the presented work, we study non-linear effects in a system of two coupled optical microcavities. Bose-Einstein condensation of polaritons and polariton lasing occur at the two lowest energy levels of an overall four-level system. This is a surprising result in the context of what has previously been observed in single microcavities, where condensation took place in the system's ground state. Emission dynamics measurements have shown that in the present case the condensates of different energies share the same lasing threshold, but do not appear simultaneously, i.e. they form and disappear subsequently, one by one. Moreover, the transition to the condensate state is accompanied by an energy-degenerate parametric scattering of polaritons, i.e. the one in which the state of the crystal is preserved before and after the scattering process - explains Krzysztof Sawicki. In previous studies on coupled microcavities, parametric scattering was obtained using strictly resonant excitation. The non-resonant excitation used in the present work enables spectral separation of the signal from the excitation laser, which is a promising result from the point of view of implementing sources of entangled photons based on polaritons.



Previously, a coupled microcavity system was used to demonstrate energy transfer over 2 micrometers, mediated by polariton states. This is a record distance taking into account the typical nanometer scale of interaction between excitons in a semiconductor. We expect our results to open the way to the research on new types of non-linear effects in multi-level polariton systems. Our work is essential for such rapidly developing fields as, for example, all-optical quantum computing, since the non-linear interactions in a multi-level system may enable the implementation of logic systems based on polaritons – adds Jan Suffczynski.



For more information, please contact with Krzysztof Sawicki or Jan Suffczynski from the Laboratory of Ultrafast MagnetoSpectoscopy (LUMS).





Physics and astronomy at the University of Warsaw appeared in 1816 as part of the then Faculty of Philosophy. In 1825, the Astronomical Observatory was established. Currently, the Faculty of Physics at the University of Warsaw consists of the following institutes: Experimental Physics, Theoretical Physics, Geophysics, the Department of Mathematical Methods and the Astronomical Observatory. The research covers almost all areas of modern physics, on scales from quantum to cosmological. The Faculty's research and teaching staff consist of over 200 academic teachers, 81 of whom are professors. About 1,000 students and over 170 doctoral students study at the Faculty of Physics at the University of Warsaw.

####

For more information, please click here

Contacts:
Agata Meissner

Office: 48-225-532-573
Expert Contact

Jan Suffczynski

Office: +48 225532707

Copyright © University of Warsaw

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

SCIENTIFIC PAPERS:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project