Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices

A team of researchers created a new method to capture ultrafast atomic motions inside the tiny switches that control the flow of current in electronic circuits. Pictured here are Aditya Sood (left) and Aaron Lindenberg (right).

CREDIT
Greg Stewart/SLAC National Accelerator Laboratory
A team of researchers created a new method to capture ultrafast atomic motions inside the tiny switches that control the flow of current in electronic circuits. Pictured here are Aditya Sood (left) and Aaron Lindenberg (right). CREDIT Greg Stewart/SLAC National Accelerator Laboratory

Abstract:
Electronic circuits that compute and store information contain millions of tiny switches that control the flow of electric current. A deeper understanding of how these tiny switches work could help researchers push the frontiers of modern computing.

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices

Menlo Park, CA | Posted on July 16th, 2021

Now scientists have made the first snapshots of atoms moving inside one of those switches as it turns on and off. Among other things, they discovered a short-lived state within the switch that might someday be exploited for faster and more energy-efficient computing devices.

The research team from the Department of Energy's SLAC National Accelerator Laboratory, Stanford University, Hewlett Packard Labs, Penn State University and Purdue University described their work in a paper published in Science today.

"This research is a breakthrough in ultrafast technology and science," says SLAC scientist and collaborator Xijie Wang. "It marks the first time that researchers used ultrafast electron diffraction, which can detect tiny atomic movements in a material by scattering a powerful beam of electrons off a sample, to observe an electronic device as it operates."

Capturing the cycle

For this experiment, the team custom-designed miniature electronic switches made of vanadium dioxide, a prototypical quantum material whose ability to change back and forth between insulating and electrically conducting states near room temperature could be harnessed as a switch for future computing. The material also has applications in brain-inspired computing because of its ability to create electronic pulses that mimic the neural impulses fired in the human brain.

The researchers used electrical pulses to toggle these switches back and forth between the insulating and conducting states while taking snapshots that showed subtle changes in the arrangement of their atoms over billionths of a second. Those snapshots, taken with SLAC's ultrafast electron diffraction camera, MeV-UED, were strung together to create a molecular movie of the atomic motions.

"This ultrafast camera can actually look inside a material and take snapshots of how its atoms move in response to a sharp pulse of electrical excitation," said collaborator Aaron Lindenberg, an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC and a professor in the Department of Materials Science and Engineering at Stanford University. "At the same time, it also measures how the electronic properties of that material change over time."

With this camera, the team discovered a new, intermediate state within the material. It is created when the material responds to an electric pulse by switching from the insulating to the conducting state.

"The insulating and conducting states have slightly different atomic arrangements, and it usually takes energy to go from one to the other," said SLAC scientist and collaborator Xiaozhe Shen. "But when the transition takes place through this intermediate state, the switch can take place without any changes to the atomic arrangement."

Opening a window on atomic motion

Although the intermediate state exists for only a few millionths of a second, it is stabilized by defects in the material.

To follow up on this research, the team is investigating how to engineer these defects in materials to make this new state more stable and longer lasting. This will allow them to make devices in which electronic switching can occur without any atomic motion, which would operate faster and require less energy.

"The results demonstrate the robustness of the electrical switching over millions of cycles and identify possible limits to the switching speeds of such devices," said collaborator Shriram Ramanathan, a professor at Purdue. "The research provides invaluable data on microscopic phenomena that occur during device operations, which is crucial for designing circuit models in the future."

The research also offers a new way of synthesizing materials that do not exist under natural conditions, allowing scientists to observe them on ultrafast timescales and then potentially tune their properties.

"This method gives us a new way of watching devices as they function, opening a window to look at how the atoms move," said lead author and SIMES researcher Aditya Sood. "It is exciting to bring together ideas from the traditionally distinct fields of electrical engineering and ultrafast science. Our approach will enable the creation of next-generation electronic devices that can meet the world's growing needs for data-intensive, intelligent computing."

###

MeV-UED is an instrument of the LCLS user facility, operated by SLAC on behalf of the DOE Office of Science, who funded this research.

####

About SLAC National Accelerator Laboratory
SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, please click here

Contacts:
Manuel Gnida

650-926-2632

@SLAClab

Copyright © SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: Sood et al., Science, 16 July 2021 (10.1126/science.abc0652):

Related News Press

Quantum Physics

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Laboratories

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

Videos/Movies

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Govt.-Legislation/Regulation/Funding/Policy

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Chip Technology

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Quantum nanoscience

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project