Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption

Abstract:
Singapore University of Technology and Design (SUTD) researchers have uncovered how the environment can impact highly sensitive quantum behaviours like localisation. Their findings, published in Chaos, could lead to future innovations in the design of superconducting materials and quantum devices, including super precise sensors.

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption

Singapore | Posted on June 1st, 2021

Quantum technology, in particular quantum sensing, promises to measure and capture our world at levels of precision never before possible. Such precision has diverse applications, from speedier and more sensitive medical imaging to recording time on high-frequency market trades, and even the development of sensors that can determine whether the ground beneath us is solid rock or a natural oil-and-gas reservoir.

Yet for all its theoretical potential, one considerable practical challenge remains when producing quantum measuring devices: controlling how they respond to the environment. Real devices are extremely sensitive to noise, which at best reduces their level of precision and at worst leads to unacceptable levels of error. When it comes to crafting ultra-precise sensors, such noise could overwhelm any useful signals.

Understanding how quantum devices respond to noise would help researchers find new ways to protect them from noise, making novel measurement and sensing technologies more feasible. Beyond increasing their accuracy, researchers may even be able to give quantum devices new properties. "If you could tune the amount of noise that these devices experience, you can make them function very differently and get an even more interesting device," explained Associate Professor Dario Poletti from SUTD, who led the study.

For example, scientists have known for decades that disorder in a system can cause a phenomenon called localisation, where a system gets 'stuck' to its initial state. On the other hand, when the particles in a system interact with each other strongly, there is a possibility that they can become 'unstuck,' that is, delocalised.

To study this tug-of-war between disorder and interaction, Poletti and PhD student Xiansong Xu added a third variable: the environment. Beginning with a theoretical model known as the XXZ spin chain, the researchers showed that the environment can have contrasting effects on localisation, depending on the strength of both the disorder and interaction in the system.

Performing numerical computations on the model, the researchers found that putting the system in contact with a dissipative environment such as a bath of photons pushed it towards delocalisation and made it more mobile, fluid and uniform, like water.

Importantly, they also found that while both weakly and strongly interacting systems still showed signs of localisation, the types of localisation were surprisingly different: one grainier and stuck, like sand, and the other, more uniform while still stuck, like ice.

This theoretical discovery suggests that the properties of certain materials can be tuned through changes in the external environment. For example, researchers might be able to turn a material from an insulator into a conductor by shining light on it -- or turn the material from one kind of insulator into another, with applications that go beyond quantum technologies to materials science and nanoelectronics.

"There are already quantum devices out there, and we will likely see more and more of them," Poletti said. "Devices are never truly isolated from their environments, so we would like to better understand how they can work in conjunction with the environment."

"Now the quest is to dig deeper and look for different systems, or go towards real materials and see what else can happen there," he added. "This kind of research is done over many years. We're trying to build fundamental knowledge and tools so that eventually, industry can take over."

####

For more information, please click here

Contacts:
Jessica Sasayiah

65-649-94823

Copyright © Singapore University of Technology and Design (SUTD)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Quantum Physics

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Sensors

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Engineers develop prototype of electronic nose September 3rd, 2021

Nanoelectronics

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Non-linear effects in coupled optical microcavities August 5th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Tools

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Tweezer grant pleases Rice researchers: University wins NSF grant to acquire ‘optical tweezer’ to manipulate micron-scale matter September 10th, 2021

Imaging single spine structural plasticity at the nanoscale level: Researchers at the Max Planck Florida Institute for Neuroscience (MPFI) have developed a new imaging technique capable of visualizing the dynamically changing structure of dendritic spines with unprecedented resol September 3rd, 2021

Rice physicists find 'magnon' origins in 2D magnet: Topological feature could prove useful for encoding information in electron spins September 3rd, 2021

Quantum nanoscience

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing August 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project