Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Energy transmission by gold nanoparticles coupled to DNA structures

A 40 nm gold sphere induces plasmonic coupling between two 50 nm long gold rods that are arranged in a chiral fashion.
Source: T. Liedl
A 40 nm gold sphere induces plasmonic coupling between two 50 nm long gold rods that are arranged in a chiral fashion. Source: T. Liedl

Abstract:
Using DNA structures as scaffolds, Tim Liedl, a scientist of Ludwig-Maximilians-Universitaet (LMU) in Munich, has shown that precisely positioned gold nanoparticles can serve as efficient energy transmitters.

Energy transmission by gold nanoparticles coupled to DNA structures

Munich, Germany | Posted on April 9th, 2021

Since the inception of the field in 2006, laboratories around the world have been exploring the use of 'DNA origami' for the assembly of complex nanostructures. The method is based on DNA strands with defined sequences that interact via localized base pairing. "With the aid of short strands with appropriate sequences, we can connect specific regions of long DNA molecules together, rather like forming three-dimensional structures by folding a flat sheet of paper in certain ways," as Professor Tim Liedl of the Faculty of Physics at LMU explains.

Image and mirror image

Liedl has now used DNA origami to construct chiral objects, i.e. structures that cannot be superimposed by any combination of rotation and translation. Instead they possess 'handedness', and are mirror images of one another. Such pairs often differ in their physical properties, for example, in the degree to which they absorb polarized light. This effect can be exploited in many ways. For example, it is the basis for CD spectroscopy (the 'CD' here stands for 'circular dichroism'), a technique that is used to elucidate the overall spatial configuration of chemical compounds, and even whole proteins.

With a view to assembling chiral metal structures, Liedl and his group synthesized complex DNA-origami structures that provide precisely positioned binding sites for the attachment of spherical and rod-shaped gold nanoparticles. The scaffold therefore serves as a template or mold for the placement of nanoparticles at predetermined positions and in a defined spatial orientation. "One can assemble a chiral object based solely on the arrangement of the gold nanoparticles," says Liedl

Gold is not only chemically robust, as a noble metal it exhibits what are known as surface plasmon resonances. Plasmons are coherent electron oscillations that are generated when light interacts with the surface of a metal structure. "One can picture these oscillations as being like the waves that are excited when a bottle of water is shaken either parallel or at right angles to its long axis," says Liedl.

Gold nanoparticles as energy transmitters

Oscillations excited in spatially contiguous gold particles can couple to one another, and the plasmons in Liedl's experiments behave as image and mirror image, thanks to their chiral disposition on the origami scaffold. "This is confirmed by our CD spectroscopic measurements," says Liedl. In the experiments, the chiral structures are irradiated with circularly polarized light and the level of absorption is measured as a percentage of the input. This enables right- and left-handed arrangements to be distinguished from one another.

In principle, two gold nanorods should be sufficient for the construction of chiral object, as they can be arranged either in the form of an L or an inverted L. However, the rods used in the experiments were relatively far apart (on the nanoscale) and the plasmons excited in one had little effect on those generated in the other, i.e. the two hardly coupled to each other at all. But Liedl and his colleagues had a trick up their sleeves. By appropriate redesign of the origami structure, they were able to position a gold nanosphere between the pair of L-formed rods, which effectively amplified the coupling. CD spectroscopy revealed the presence of energy transitions, thus confirming the hypothesis which the team had derived from simulations.

Liedl envisages two potential settings in which these nanostructures could find practical application. They could be used to detect viruses, since the binding of viral nucleic acids to a gold particle will amplify the CD signal. In addition, chiral plasmonic transmitters could serve as model switching devices in optical computers, in which optical elements replace the transistors that are the workhorses of electronic computers.

####

For more information, please click here

Contacts:
Constanze Drewlo

0049-089-218-03423

Copyright © Ludwig-Maximilians-Universität München (LMU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project