Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111)

Scanning tunneling microscopy images of the synthesis of 3P sub-family armchair graphene nanoribbons through the lateral fusion of 3-AGNR on Cu(111). The introduction of O2 can reduce the temperature of the reaction by 180 K.

CREDIT
©Science China Press
Scanning tunneling microscopy images of the synthesis of 3P sub-family armchair graphene nanoribbons through the lateral fusion of 3-AGNR on Cu(111). The introduction of O2 can reduce the temperature of the reaction by 180 K. CREDIT ©Science China Press

Abstract:
On-surface synthesis has received great attention as a method to create atomically-precise one-dimensional (1D) and two-dimensional (2D) polymers with intriguing properties. In particular, graphene nanoribbons (GNRs), a category of quasi-1D nanomaterials derived from graphene, have been widely studied due to their tunable electronic properties and potential applications in semiconductor devices, such as field-effect transistors and spintronics. A series of top-down approaches have been pursued to produce GNRs, but a lack of control over the ribbon width and edge structure has hindered their further development.

Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111)

Beijing, China | Posted on April 2nd, 2021

In 2010, Cai et al. firstly reported the fabrication of an atomically-precise armchair GNR (AGNR) on the Au(111) surface using a bottom-up approach. The basic mechanism involves thermally-activated dehalogenation, surface-assisted polymerization and finally cyclodehydrogenation.

In the following decade, this bottom-up approach has been extended to synthesize a wide variety of GNRs, including AGNRs with different widths, zigzag GNRs, GNR heterojunctions, chiral GNRs and chemically- doped GNRs. Based on the periodic similarity of their electronic structures, AGNRs can be classified into three families, 3p, 3p+1 and 3p+2 (representing the number of carbon atoms in the narrow direction).

So far, few studies have focused on GNR synthesis on Cu(111) due to the stronger surface interaction, despite the lower temperature for dehalogenation. It has been shown that chiral GNRs can be synthesized on Cu(111) using the same precursor which yields non-chiral 7-AGNR on Au(111) and that dehalogenation can be reversible on Au(111) but not Cu(111), which implies that the reaction pathway and products achieved could be controlled through the choice of substrate.

A second approach to tailor the reaction pathway in surface-confined synthesis is to introduce different atomic species, which has been considered in only a few recent studies. Exposure to iodine creates a monolayer intercalated between the polymers and the Ag(111) surface that decouples their electronic interactions. In addition, hydrogen was shown to remove halogen by-products and to induce covalent coupling, and sulphur to switch the surface-confined Ullmann reaction on or off.

Prof. Lifeng Chi's research group in Soochow University recently investigated the effect of oxygen on the synthesis of 3-AGNRs by surface-confined Ullmann coupling and determined that it, instead, caused a 1D to 2D transformation of the organometallic (OM) structures.

Here, their objective was to investigate the synthesis of 3p-AGNRs on Cu(111), extending from the previous study on Au(111), and to examine the effect of oxygen on lateral fusion of 3-AGNRs, inspired by their potential to promote C-H activation.

Their investigation demonstrated the successful synthesis of 3p-AGNRs on Cu(111) via lateral fusion of poly(para-phenylene) (i.e. 3-AGNR). Introduction of co-adsorbed atomic oxygen substantially reduced the temperature required to induce the lateral fusion reaction. The identification of this catalytic effect could benefit on-surface synthesis that applies dehydrogenation reactions, not restricting to GNRs, and highlights the potential of additional atomic adsorbates to steer surface reactions.

####

For more information, please click here

Contacts:
Lifeng Chi

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Ji P, Maclean O, Galeotti G, Dettmann D, Berti G, Sun K, Zhang H, Rosei F, Chi L. Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111). Sci China Chem, 2021, 64, :

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project