Home > Press > Microfabricated elastic diamonds improve material's electronic properties
![]() |
Abstract:
Overcoming a key obstacle in achieving diamond-based electronic and optoelectronic devices, researchers have presented a new way to fabricate micrometer-sized diamonds that can elastically stretch.
Elastic diamonds could pave the way for advanced electronics, including semiconductors and quantum information technologies. In addition to being the hardest materials in nature, diamonds have exceptional electronic and photonic properties, featuring both ultrahigh thermal and electric conductivity. Not only would diamond-based electronics dissipate heat more quickly, reducing the need for cooling, they can handle high voltages and do so with greater efficiency than most other materials. Because of a diamond's rigid crystalline structure, practical use of the material in electronic devices has remained a limiting challenge. Subjecting diamond to large amounts of strain, which should alter the material's electronic properties, is one way to potentially overcome these obstacles. However, precisely controlling the strain across amounts of diamond needed for device applications has yet to be fully achieved. Here, Chaoqun Dang and colleagues present an approach for engineering diamond that exhibits uniform elastic strain. In a series of experiments, Dang et al. show how their microfabricated, micrometer-sized, single-crystalline diamond plates can elastically stretch - upwards of 10% - along several different crystallographic directions at room temperature. They could recover their length and shape, following these experiments. What's more, the authors show that this highly controllable elasticity can fundamentally change the diamond's electronic properties, including a near 2 electron volt bandgap reduction.
####
For more information, please click here
Contacts:
Science Press Package Team
202-326-6777
@AAAS
Copyright © American Association for the Advancement of Science
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Possible Futures
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Chip Technology
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Quantum Computing
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Stretching diamond for next-generation microelectronics January 5th, 2021
Discoveries
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Materials/Metamaterials
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Announcements
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Quantum nanoscience
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |