Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma

Professor Reinhard Dörner (left) and Dr Maksim Kunitzki in front of the COLTRIMS reaction microscope at Goethe University, which was used to observe the quantum wave. (Photo: Goethe University Frankfurt)
Professor Reinhard Dörner (left) and Dr Maksim Kunitzki in front of the COLTRIMS reaction microscope at Goethe University, which was used to observe the quantum wave. (Photo: Goethe University Frankfurt)

Abstract:
Anyone entering the world of quantum physics must prepare themself for quite a few things unknown in the everyday world: Noble gases form compounds, atoms behave like particles and waves at the same time and events that in the macroscopic world exclude each other occur simultaneously.

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma

Frankfurt, Germany | Posted on December 30th, 2020

In the world of quantum physics, Reinhard Dörner and his team are working with molecules which - in the sense of most textbooks - ought not to exist: Helium compounds with two atoms, known as helium dimers. Helium is called a noble gase precisely because it does not form any compounds. However, if the gas is cooled down to just 10 degrees above absolute zero (minus 273 °C) and then pumped through a small nozzle into a vacuum chamber, which makes it even colder, then - very rarely - such helium dimers form. These are unrivaledly the weakest bound stable molecules in the Universe, and the two atoms in the molecule are correspondingly extremely far apart from each other. While a chemical compound of two atoms commonly measures about 1 angstrom (0.1 nanometres), helium dimers on average measure 50 times as much, i.e. 52 angstrom.

The scientists in Frankfurt irradiated such helium dimers with an extremely powerful laser flash, which slightly twisted the bond between the two helium atoms. This was enough to make the two atoms fly apart. They then saw - for the very first time - the helium atom flying away as a wave and record it on film.

According to quantum physics, objects behave like a particle and a wave at the same time, something that is best known from light particles (photons), which on the one hand superimpose like waves where they can pile upor extinguish each other (interference), but on the other hand as "solar wind" can propel spacecraft via their solar sails, for example.

That the researchers were able to observe and film the helium atom flying away as a wave at all in their laser experiment was due to the fact that the helium atom only flew away with a certain probability: With 98 per cent probability it was still bound to its second helium partner, with 2 per cent probability it flew away. These two helium atom waves - Here it comes! Quantum physics! - superimpose and their interference could be measured.

The measurement of such "quantum waves" can be extended to quantum systems with several partners, such as the helium trimer composed of three helium atoms. The helium trimer is interesting because it can form what is referred to as an "exotic Efimov state", says Maksim Kunitski, first author of the study: "Such three-particle systems were predicted by Russian theorist Vitaly Efimov in 1970 and first corroborated on caesium atoms. Five years ago, we discovered the Efimov state in the helium trimer. The laser pulse irradiation method we've now developed might allow us in future to observe the formation and decay of Efimov systems and thus better understand quantum physical systems that are difficult to access experimentally."

####

For more information, please click here

Contacts:
Dr. Markus Bernards

49-697-981-2498

@goetheuni

Copyright © Goethe University Frankfurt

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Video:

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

Quantum Physics

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022

Videos/Movies

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Photonics/Optics/Lasers

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Research partnerships

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

New hybrid structures could pave the way to more stable quantum computers: Study shows that merging a topological insulator with a monolayer superconductor could support theorized topological superconductivity October 28th, 2022

“Kagome” metallic crystal adds new spin to electronics October 28th, 2022

New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022

Quantum nanoscience

Upgrading your computer to quantum September 23rd, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022

Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project