Home > Press > Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma
![]() |
Professor Reinhard Dörner (left) and Dr Maksim Kunitzki in front of the COLTRIMS reaction microscope at Goethe University, which was used to observe the quantum wave. (Photo: Goethe University Frankfurt) |
Abstract:
Anyone entering the world of quantum physics must prepare themself for quite a few things unknown in the everyday world: Noble gases form compounds, atoms behave like particles and waves at the same time and events that in the macroscopic world exclude each other occur simultaneously.
In the world of quantum physics, Reinhard Dörner and his team are working with molecules which - in the sense of most textbooks - ought not to exist: Helium compounds with two atoms, known as helium dimers. Helium is called a noble gase precisely because it does not form any compounds. However, if the gas is cooled down to just 10 degrees above absolute zero (minus 273 °C) and then pumped through a small nozzle into a vacuum chamber, which makes it even colder, then - very rarely - such helium dimers form. These are unrivaledly the weakest bound stable molecules in the Universe, and the two atoms in the molecule are correspondingly extremely far apart from each other. While a chemical compound of two atoms commonly measures about 1 angstrom (0.1 nanometres), helium dimers on average measure 50 times as much, i.e. 52 angstrom.
The scientists in Frankfurt irradiated such helium dimers with an extremely powerful laser flash, which slightly twisted the bond between the two helium atoms. This was enough to make the two atoms fly apart. They then saw - for the very first time - the helium atom flying away as a wave and record it on film.
According to quantum physics, objects behave like a particle and a wave at the same time, something that is best known from light particles (photons), which on the one hand superimpose like waves where they can pile upor extinguish each other (interference), but on the other hand as "solar wind" can propel spacecraft via their solar sails, for example.
That the researchers were able to observe and film the helium atom flying away as a wave at all in their laser experiment was due to the fact that the helium atom only flew away with a certain probability: With 98 per cent probability it was still bound to its second helium partner, with 2 per cent probability it flew away. These two helium atom waves - Here it comes! Quantum physics! - superimpose and their interference could be measured.
The measurement of such "quantum waves" can be extended to quantum systems with several partners, such as the helium trimer composed of three helium atoms. The helium trimer is interesting because it can form what is referred to as an "exotic Efimov state", says Maksim Kunitski, first author of the study: "Such three-particle systems were predicted by Russian theorist Vitaly Efimov in 1970 and first corroborated on caesium atoms. Five years ago, we discovered the Efimov state in the helium trimer. The laser pulse irradiation method we've now developed might allow us in future to observe the formation and decay of Efimov systems and thus better understand quantum physical systems that are difficult to access experimentally."
####
For more information, please click here
Contacts:
Dr. Markus Bernards
49-697-981-2498
@goetheuni
Copyright © Goethe University Frankfurt
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Quantum Physics
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Videos/Movies
Pitt researchers create nanoscale slalom course for electrons: Professors from the Department of Physics and Astronomy have created a serpentine path for electrons November 27th, 2020
Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020
Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020
Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020
Possible Futures
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Discoveries
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Announcements
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Photonics/Optics/Lasers
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Controlling chemical catalysts with sculpted light January 15th, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Stretching diamond for next-generation microelectronics January 5th, 2021
Research partnerships
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Understanding nanoparticle entry mechanism into tumors December 25th, 2020
Quantum nanoscience
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |