Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atomic-scale nanowires can now be produced at scale: Scalable synthesis of transition metal chalcogenide nanowires for next-gen electronics

(a) Illustration of a TMC nanowire (b) Chemical vapor deposition. The ingredients are vaporized in a hydrogen/nitrogen atmosphere and allowed to deposit and self-assemble on a substrate. Reprinted with permission from Ref. 1

CREDIT
Copyright 2020 American Chemical Society (ACS)
(a) Illustration of a TMC nanowire (b) Chemical vapor deposition. The ingredients are vaporized in a hydrogen/nitrogen atmosphere and allowed to deposit and self-assemble on a substrate. Reprinted with permission from Ref. 1 CREDIT Copyright 2020 American Chemical Society (ACS)

Abstract:
Researchers from Tokyo Metropolitan University have discovered a way to make self-assembled nanowires of transition metal chalcogenides at scale using chemical vapor deposition. By changing the substrate where the wires form, they can tune how these wires are arranged, from aligned configurations of atomically thin sheets to random networks of bundles. This paves the way to industrial deployment in next-gen industrial electronics, including energy harvesting, and transparent, efficient, even flexible devices.

Atomic-scale nanowires can now be produced at scale: Scalable synthesis of transition metal chalcogenide nanowires for next-gen electronics

Tokyo, Japan | Posted on December 25th, 2020

Electronics is all about making things smaller. Smaller features on a chip, for example, means more computing power in the same amount of space and better efficiency, essential to feeding the increasingly heavy demands of a modern IT infrastructure powered by machine learning and artificial intelligence. And as devices get smaller, the same demands are made of the intricate wiring that ties everything together. The ultimate goal would be a wire that is only an atom or two in thickness. Such nanowires would begin to leverage completely different physics as the electrons that travel through them behave more and more as if they live in a one-dimensional world, not a 3D one.

In fact, scientists already have materials like carbon nanotubes and transition metal chalcogenides (TMCs), mixtures of transition metals and group 16 elements which can self-assemble into atomic-scale nanowires. The trouble is making them long enough, and at scale. A way to mass produce nanowires would be a game changer.

Now, a team led by Dr. Hong En Lim and Associate Professor Yasumitsu Miyata from Tokyo Metropolitan University has come up with a way of making long wires of transition metal telluride nanowires at unprecedentedly large scales. Using a process called chemical vapor deposition (CVD), they found that they could assemble TMC nanowires in different arrangements depending on the surface or substrate that they use as a template. Examples are shown in Figure 2; in (a), nanowires grown on a silicon/silica substrate form a random network of bundles; in (b), the wires assemble in a set direction on a sapphire substrate, following the structure of the underlying sapphire crystal. By simply changing where they are grown, the team now have access to centimeter-sized wafers covered in the arrangement they desired, including monolayers, bilayers and networks of bundles, all with different applications. They also found that the structure of the wires themselves were highly crystalline and ordered, and that their properties, including their excellent conductivity and 1D-like behavior, matched those found in theoretical predictions.

Having large amounts of long, highly crystalline nanowires is sure to help physicists characterize and study these exotic structures in more depth. Importantly, it's an exciting step towards seeing real-world applications of atomically-thin wires, in transparent and flexible electronics, ultra-efficient devices and energy harvesting applications.

This work was supported by JST CREST Grants (JPMJCR16F3, JPMJCR17I5), Japan Society for the Promotion of Science (JSPS) KAKENHI Grants-in-Aid for Scientific Research (B) (JP18H01832, JP19H02543, JP20H02572, JP20H02573), Young Scientists (JP19K15383, JP19K15393), Scientific Research on Innovative Areas (JP20H05189, JP26102012), Specially Promoted Research (JP25000003), Challenging Research (Exploratory) (19K22127), and Scientific Research (A) (JP17H01069), and grants from the Murata Science Foundation (2019, H31-068) and the Japan Keirin Autorace Foundation (2020M-121). This work was partially conducted at the AIST Nano-Processing Facility supported by "Nanotechnology Platform Program" of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Grant Number JPMXP09F19008709 and 20009034.

####

For more information, please click here

Contacts:
Go Totsukawa

81-426-772-728

@TMU_PR

Copyright © Tokyo Metropolitan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:

Related News Press

News and information

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Possible Futures

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Chip Technology

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Self Assembly

Making 3-D Nanosuperconductors with DNA: Complex 3-D nanoscale architectures based on DNA self-assembly can conduct electricity without resistance and may provide a platform for fabricating quantum computing and sensing devices November 10th, 2020

Tandon Researchers develop method to create colloidal diamonds: The long-awaited photonic technique could change the way optical technologies are developed and used over the next decade September 24th, 2020

Tandon Researchers develop method to create colloidal diamonds: The long-awaited photonic technique could change the way optical technologies are developed and used over the next decade September 24th, 2020

Polymers self-assembling like links of a chain for innovative materials: Nature just published the research on unprecedented "Self-assembled poly-catenanes" July 16th, 2020

Nanoelectronics

Shapeshifting crystals-varying stability in different forms of gallium selenide monolayers: Researchers investigate the structure and properties of a recently identified polymorph of gallium selenide crystal layer January 1st, 2021

CEA-Leti Papers at IEDM 2020 Highlight Progress in Overcoming Challenges to Making GaN Energy-Saving, Power-Electronics Devices: Gallium Nitride Seen as Highly Efficient Replacement for Silicon In Wide Range of Consumer and Industrial Uses December 17th, 2020

Aledia, French Developer of Next-Generation MicroLED Displays For High-Volume Consumer Markets, Announces it Has Produced its First Nanowire Chips on 300mm Silicon Wafers Using CEA-Leti Pilot Lines: Company will produce microLEDs on both 200mm and 300mm silicon wafers December 15th, 2020

An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020

Discoveries

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Announcements

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Nanoparticle vaccine for COVID-19 January 8th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project