Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synthesis of organophilic carbon nanodots with multi-band emission from tomato leaves

Organophilic carbon nanodots (CNDs) were synthesized from extract of natural plant leaves. The CNDs showed multi-band emission, and could be well-dispersed in acetone and ethanol. Taking advantage of their optical property, the CNDs were applied as a ratiometric and colorimetric sensor for curcumin detection in ethanol solution.
Organophilic carbon nanodots (CNDs) were synthesized from extract of natural plant leaves. The CNDs showed multi-band emission, and could be well-dispersed in acetone and ethanol. Taking advantage of their optical property, the CNDs were applied as a ratiometric and colorimetric sensor for curcumin detection in ethanol solution.

Abstract:
n a paper published in NANO, researchers from Shanghai Normal University, China prepared organophilic carbon nanodots (CNDs) using natural organic molecules in plant leaves by a one-pot green synthesis. The multi-emissive carbon dots were used as an efficient fluorescent sensor in ethanol, which have potential applications in sensing fields or energy devices.

Synthesis of organophilic carbon nanodots with multi-band emission from tomato leaves

Singapore | Posted on August 21st, 2020

Organophilic carbon nanodots (CNDs) were synthesized in acetone from organic extract of natural plant leaves. The CNDs showed multi-band emission, and could be well dispersed in acetone and ethanol. Taking advantage of their structural and optical properties, the CNDs were used as a ratiometric and colorimetric sensor for curcumin detection in ethanol.

Multi-band emission is one of the intriguing properties of the CNDs. In this work, the biomass-derived CNDs showed two photoluminescence (PL) bands. The PL at 520 nm was excitation-independent, while the PL in the blue region could be tuned from 420 nm to 480 nm through changing of the excitation wavelength. Taking advantage of their optical properties, the CNDs were used as a ratiometric and colorimetric sensor for curcumin detection in ethanol. The blue PL of the CNDs at 420 nm was quenched by curcumin through inner filter effect. Meanwhile, the green PL at 495 and 535 nm were enhanced with additional fluorescence of curcumin. The fluorescence color of the mixed solution changed from blue to yellow, and the detection limit reached 36.7 nM. The sensitive and visual detection of the CNDs probe toward curcumin showed their high potential in practical applications.

While most CNDs reported so far were prepared in water, it is of high demand to develop CNDs that can be well dispersed in organic solution. Natural plant leaves contain plenty of organic molecules, their aliphatic groups may be reserved during the formation of the CNDs, and act as surface groups to realize hydrophobicity of the obtained CNDs. Here, the CNDs were directly synthesized in acetone containing organic extract of plant leaves, and could be well-dispersed in acetone and ethanol. This work provided a possible way for changing surface groups of the CNDs by selecting the raw materials.

This work was supported by National Natural Science Foundation of China (No. 61904108; 31900260) and Chenguang Program" (No. 19CG50) by Shanghai Education Development Foundation and Shanghai Municipal Education Commission. The authors would like to thank Dr. Xiaofeng Xu for providing the plant leaves, and thank Dr. Jianwen Yang for the funding and opportunity to finish this work.

###

####

About World Scientific
World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 140 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com .

For more information, please click here

Contacts:
Yu Shan Tay


@worldscientific

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

A single molecule makes a big splash in the understanding of the two types of water January 7th, 2022

Researchers use electron microscope to turn nanotube into tiny transistor December 24th, 2021

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021

Sensors

‘Pop-up’ electronic sensors could detect when individual heart cells misbehave December 24th, 2021

Researchers uncover the mechanism of electric field detection in microscale graphene sensors December 24th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Energy

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Templating approach stabilizes ‘ideal’ material for alternative solar cells December 24th, 2021

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance December 17th, 2021

Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project