Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions

Abstract:
- A team of researchers led by Sufei Shi, an assistant professor of chemical and biological engineering at Rensselaer Polytechnic Institute, has uncovered new information about the mass of individual components that make up a promising quasiparticle, known as an exciton, that could play a critical role in future applications for quantum computing, improved memory storage, and more efficient energy conversion.

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions

Troy, NY | Posted on June 19th, 2020

Published today in Nature Communications, the team's work brings researchers one step closer to advancing the development of semiconductor devices by deepening their understanding of an atomically thin class of materials known as transitional metal dichalcogenides (TMDCs), which have been eyed for their electronic and optical properties. Researchers still have a lot to learn about the exciton before TMDCs can successfully be used in technological devices.

Shi and his team have become leaders in that pursuit, developing and studying TMDCs, and the exciton in particular. Excitons are typically generated by energy from light and form when a negatively charged electron bonds with a positively charged hole particle.

The Rensselaer team found that within this atomically thin semiconductor material, the interaction between electrons and holes can be so strong that the two particles within an exciton can bond with a third electron or hole particle to form a trion.

In this new study, Shi's team was able to manipulate the TMDCs material so the crystalline lattice within would vibrate, creating another type of quasiparticle known as a phonon, which will strongly interact with a trion. The researchers then placed the material within a high magnetic field, analyzed the light emitted from the TMDCs from the phonon interaction, and were able to determine the effective mass of the electron and hole individually.

Researchers previously assumed there would be symmetry in mass, but, Shi said, the Rensselaer team found these measurements were significantly different.

"We have developed a lot of knowledge about TMDCs now," Shi said. "But in order to design an electronic or optoelectronic device, it is essential to know the effective mass of the electrons and holes. This work is one solid step toward that goal."

###

This research was also led by Zhipeng Li, a postdoctoral researcher at Rensselaer, and Tianmeng Wang and Shengnan Miao, both doctoral students in chemical engineering at Rensselaer. The work was done in collaboration with a theoretical team led by Chuanwei Zhang, a professor of physics at the University of Texas at Dallas, scientists from Maglab in Tallahassee, and crystal growers from Arizona State University and Japan. This work is primarily supported by an Air Force Office of Scientific Research grant and a National Science Foundation CAREER award.

####

About Rensselaer Polytechnic Institute
Founded in 1824, Rensselaer Polytechnic Institute is America's first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu .

For more information, please click here

Contacts:
Reeve Hamilton

518-833-4277

@rpinews

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences December 2nd, 2020

Videos/Movies

Pitt researchers create nanoscale slalom course for electrons: Professors from the Department of Physics and Astronomy have created a serpentine path for electrons November 27th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

Govt.-Legislation/Regulation/Funding/Policy

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

NIST sensor experts invent supercool mini thermometer November 17th, 2020

Arrowhead Interim Clinical Data Demonstrate ARO-AAT Treatment Improved Multiple Biomarkers of Alpha-1 Liver Disease November 13th, 2020

Possible Futures

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

Memory Technology

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties July 24th, 2020

Photochromic bismuth complexes show great promise for optical memory elements July 24th, 2020

Quantum Computing

Spintronics advances -- Controlling magnetization direction of magnetite at room temperature: Scientists develop an energy-efficient strategy to reversibly change 'spin orientation' or magnetization direction in magnetite at room temperature November 20th, 2020

NIST sensor experts invent supercool mini thermometer November 17th, 2020

CCNY & partners in quantum algorithm breakthrough November 13th, 2020

A new candidate material for quantum spin liquids November 12th, 2020

Discoveries

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Announcements

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences December 2nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Military

CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries : Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Comp October 30th, 2020

Flash graphene rocks strategy for plastic waste: Rice University lab detours potential environmental hazard into useful material October 30th, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Landmark discovery could improve Army lasers, precision sensors September 29th, 2020

Energy

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries : Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Comp October 30th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020

Staying ahead of the curve with 3D curved graphene November 20th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Anions matter: Zinc-ion hybrid capacitors with ideal anions in the electrolyte show extra-long performance November 13th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project