Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny pump builds polyrotaxanes with precision: Artificial molecular pump gives precise control for materials design

Fraser Stoddart
Board of Trustees Professor of Chemistry
Director of the Center for Chemistry of Integrated Systems
Fraser Stoddart Board of Trustees Professor of Chemistry Director of the Center for Chemistry of Integrated Systems

Abstract:
Northwestern University researchers have developed the most precise way to build polyrotaxanes, a mechanically locked polymer for slide-ring gels, battery electrode materials and drug-delivery platforms.

Tiny pump builds polyrotaxanes with precision: Artificial molecular pump gives precise control for materials design

Evanston, IL | Posted on June 12th, 2020

A necklace-like molecule made with rings threaded onto a polymer string, polyrotaxanes are notoriously difficult to construct. A new method from the laboratory of Nobel Prize-winning chemist Sir Fraser Stoddart uses two artificial molecular pumps to install rings onto each end of a polymer string. The tiny pumps allow researchers to control precisely how many rings pass onto the polymer.



“These polyrotaxanes have never before been made with such precision,” Stoddart said. “Without the ability to define accurately the polymer’s structure, you cannot fine-tune the material’s overall properties.”



The paper will be published on Friday, June 12 in the journal Science.



Stoddart is the Board of Trustees Professor in Northwestern’s Weinberg College of Arts and Sciences. Yunyan Qiu, a postdoctoral fellow in Stoddart’s lab, is the paper’s first author.



Researchers have studied polyrotaxanes for years, fascinated by their stretchy mechanical properties and potential of materials containing them to self-heal. But, until now, it was impossible to build these promising polymers with a precise number of rings.



“Traditionally, researchers mix the rings and polymers together, and they form inclusion complexes by noncovalent interactions,” Qiu said. “But you couldn’t know how many rings were threaded until you analyzed it later using nuclear magnetic resonance microscopy. People could roughly control the percentage of rings to some extent, but it was still an estimate.”



To overcome this challenge, the Northwestern researchers used an artificial molecular pump, which was developed in Stoddart’s laboratory in 2015. The first of its kind, the pump draws power from redox reactions, driving molecules from a low-energy state to a high-energy state.



To build polyrotaxanes, the pump employs repetitive redox reactions either chemically or electrochemically, in which a molecule gains or loses electrons. Initially, the pump — situated at both ends of the polymer string — and the rings are both positively charged and, thus, repel each other.



Upon injecting electrons, units in both pumps and rings change from dicationic to radical cationic states. Suddenly, the rings are attracted to the pump heads and thread onto both ends of the polymer string. Subsequent oxidation removes the electrons, restoring the positive charges. The rings try to escape but cannot due to the positively charged units at both end of the polymer string. Mild heating allows the ring to pass over a speed bump onto the polymer chain. The pump repeats this process to recruit rings in pairs onto the polymer string.



“We can recruit up to 10 rings onto the thread,” Qiu said. “But we believe we’re only limited by the length of the chosen polymer chain. If we double the length of the polymer, we can double the number of rings.”



The team also believes that, with this method, they could use many different types of polymers to create untraditional polyrotaxanes with unusual properties.



“I’m very excited about this research,” Stoddart said. “I put it up there with some of the best papers I’ve been associated with during the past 50 years.”



Stoddart is a member of the International Institute of Nanotechnology and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University,



The study, “A precises polyrotaxane synthesizer,” was supported by the National Institutes of Health (grant number R01GM128037).

####

For more information, please click here

Contacts:
Amanda Morris


Fraser Stoddart

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Videos/Movies

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Possible Futures

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

Nanomedicine

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

'Dancing molecules' successfully repair severe spinal cord injuries: After single injection, paralyzed animals regained ability to walk within four weeks November 12th, 2021

Discoveries

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Announcements

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

A materials passport for greener batteries: Research project is investigating more environmentally friendly manufacturing and recycling processes October 15th, 2021

New study shows how to power electronics using mechanical motion: Researchers develop a composite film that can be used in nanogenerators to generate electricity from mechanical motion October 1st, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Nanobiotechnology

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

'Dancing molecules' successfully repair severe spinal cord injuries: After single injection, paralyzed animals regained ability to walk within four weeks November 12th, 2021

Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work November 5th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project