Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new study published on the cover of Science could bolster the development of batteries, fuel cells, 3D printing technologies and more

Ultrafast high-temperature sintering is an innovative approach to fabricating ceramic materials developed by UMD engineers.
Ultrafast high-temperature sintering is an innovative approach to fabricating ceramic materials developed by UMD engineers.

Abstract:
Scientists in the University of Maryland (UMD)’s A. James Clark School of Engineering have reinvented a 26,000-year-old manufacturing process into an innovative approach to fabricating ceramic materials that has promising applications for solid-state batteries, fuel cells, 3D printing technologies, and beyond.

A new study published on the cover of Science could bolster the development of batteries, fuel cells, 3D printing technologies and more

College Park, MD | Posted on May 1st, 2020

Ceramics are widely used in batteries, electronics, and extreme environments—but conventional ceramic sintering (part of the firing process used in the manufacture of ceramic objects) often requires hours of processing time. To overcome this challenge, a Maryland research team has invented an ultrafast high-temperature sintering method that both meets the needs of modern ceramics and fosters the discovery of new material innovations.

The study, led by Liangbing Hu, Herbert Rabin Distinguished Professor of the Department of Materials Science and Engineering and director of the Center for Materials Innovation at UMD, was published on the May 1 cover of Science (DOI: 10.1126/science.aaz7681). Chengwei Wang, an assistant research scientist in Hu’s group, served as first author on the study.

Conventional sintering techniques require a long processing time—it takes hours for a furnace to heat up, then several hours more to ‘bake’ the ceramic material—which is particularly problematic in the development of electrolytes for solid-state batteries. Alternative sintering technologies (such as microwave-assisted sintering, spark plasma sintering, and flash sintering) are limited for a variety of reasons, often because they are material-specific and/or expensive.

The Maryland team’s new method of ultrafast high-temperature sintering offers high heating and high cooling rates, an even temperature distribution, and sintering temperatures of up to 3,000 degrees Celsius. Combined, these processes require less than 10 seconds of total processing time—more than 1,000 times faster than the traditional furnace approach of sintering.

“With this invention, we ‘sandwiched’ a pressed green pellet of ceramic precursor powders between two strips of carbon that quickly heated the pellet through radiation and conduction, creating a consistent high-temperature environment that forced the ceramic powder to solidify quickly,” Hu said. “The temperature is high enough to sinter basically any ceramic material. This patented process can be extended to other membranes beyond ceramics.”

The study was conducted through close collaboration with Yifei Mo (associate professor, UMD), Bao Yang (professor, UMD), J.C Zhao (professor and department chair, UMD), Howard Wang (visiting research professor, UMD), Jian Luo (professor, UC San Diego), Xiaoyu Zheng (assistant professor, UCLA), and Bruce Dunn (professor and department chair, UCLA).

“Ultrafast high-temperature sintering represents a breakthrough in ultrafast sintering technologies, not only because of its general applicability to a broad range of functional materials, but also due to a great potential of creating non-equilibrium bulk materials via retaining or generating extra defects,” said Luo.

The rapid sintering technology is being commercialized through HighT-Tech LLC, a UMD spinoff company with a focus on a range of high temperature technologies (hight-tech.com).

More about this research:

“This new method solves the key bottleneck problem in computation and AI-guided materials discovery,” said Mo. “We’ve enabled a new paradigm for materials discovery with an unprecedented accelerated pace.”

“We are delighted to see the pyrolysis time reduced from tens of hours to a few seconds, preserving the fine 3D-printed structures after fast sintering,” Zheng said.

####

About University of Maryland
The A. James Clark School of Engineering at the University of Maryland serves as the catalyst for high-quality research, innovation, and learning, delivering on a promise that all graduates will leave ready to impact the Grand Challenges (energy, environment, security, and human health) of the 21st century. The Clark School is dedicated to leading and transforming the engineering discipline and profession, to accelerating entrepreneurship, and to transforming research and learning activities into new innovations that benefit millions. Visit us online at eng.umd.edu and follow us on Twitter @ClarkSchool.

For more information, please click here

Contacts:
Melissa L. Andreychek
(301) 405-0292 |

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study:

Related News Press

News and information

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences December 2nd, 2020

3D & 4D printing/Additive-manufacturing

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Use of a high-power laser enables Austrian specialist for 2PP 3D-printing to produce highly precise and fast in the nano-, micro- and meso-range September 10th, 2020

American Chemical Society Fall 2020 Virtual Meeting & Expo Aug. 17-20, 2020 August 21st, 2020

Possible Futures

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

Chip Technology

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Staying ahead of the curve with 3D curved graphene November 20th, 2020

Spintronics advances -- Controlling magnetization direction of magnetite at room temperature: Scientists develop an energy-efficient strategy to reversibly change 'spin orientation' or magnetization direction in magnetite at room temperature November 20th, 2020

Discoveries

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Materials/Metamaterials

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

Staying ahead of the curve with 3D curved graphene November 20th, 2020

Manchester group discover new family of quasiparticles in graphene-based materials: Findings to help achieve Holy Grail of 2D materials - superfast electronic devices November 13th, 2020

Announcements

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences December 2nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

Having it Both Ways: A Combined Strategy in Catalyst Design for Suzuki Cross-Couplings December 2nd, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Patents/IP/Tech Transfer/Licensing

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020

Staying ahead of the curve with 3D curved graphene November 20th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Anions matter: Zinc-ion hybrid capacitors with ideal anions in the electrolyte show extra-long performance November 13th, 2020

Artificial Intelligence

New super-resolution method reveals fine details without constantly needing to zoom in August 12th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Teaching physics to neural networks removes 'chaos blindness' June 19th, 2020

Engineers put tens of thousands of artificial brain synapses on a single chip: The design could advance the development of small, portable AI devices June 8th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project