Home > Press > A new study published on the cover of Science could bolster the development of batteries, fuel cells, 3D printing technologies and more
![]() |
Ultrafast high-temperature sintering is an innovative approach to fabricating ceramic materials developed by UMD engineers. |
Abstract:
Scientists in the University of Maryland (UMD)’s A. James Clark School of Engineering have reinvented a 26,000-year-old manufacturing process into an innovative approach to fabricating ceramic materials that has promising applications for solid-state batteries, fuel cells, 3D printing technologies, and beyond.
Ceramics are widely used in batteries, electronics, and extreme environments—but conventional ceramic sintering (part of the firing process used in the manufacture of ceramic objects) often requires hours of processing time. To overcome this challenge, a Maryland research team has invented an ultrafast high-temperature sintering method that both meets the needs of modern ceramics and fosters the discovery of new material innovations.
The study, led by Liangbing Hu, Herbert Rabin Distinguished Professor of the Department of Materials Science and Engineering and director of the Center for Materials Innovation at UMD, was published on the May 1 cover of Science (DOI: 10.1126/science.aaz7681). Chengwei Wang, an assistant research scientist in Hu’s group, served as first author on the study.
Conventional sintering techniques require a long processing time—it takes hours for a furnace to heat up, then several hours more to ‘bake’ the ceramic material—which is particularly problematic in the development of electrolytes for solid-state batteries. Alternative sintering technologies (such as microwave-assisted sintering, spark plasma sintering, and flash sintering) are limited for a variety of reasons, often because they are material-specific and/or expensive.
The Maryland team’s new method of ultrafast high-temperature sintering offers high heating and high cooling rates, an even temperature distribution, and sintering temperatures of up to 3,000 degrees Celsius. Combined, these processes require less than 10 seconds of total processing time—more than 1,000 times faster than the traditional furnace approach of sintering.
“With this invention, we ‘sandwiched’ a pressed green pellet of ceramic precursor powders between two strips of carbon that quickly heated the pellet through radiation and conduction, creating a consistent high-temperature environment that forced the ceramic powder to solidify quickly,” Hu said. “The temperature is high enough to sinter basically any ceramic material. This patented process can be extended to other membranes beyond ceramics.”
The study was conducted through close collaboration with Yifei Mo (associate professor, UMD), Bao Yang (professor, UMD), J.C Zhao (professor and department chair, UMD), Howard Wang (visiting research professor, UMD), Jian Luo (professor, UC San Diego), Xiaoyu Zheng (assistant professor, UCLA), and Bruce Dunn (professor and department chair, UCLA).
“Ultrafast high-temperature sintering represents a breakthrough in ultrafast sintering technologies, not only because of its general applicability to a broad range of functional materials, but also due to a great potential of creating non-equilibrium bulk materials via retaining or generating extra defects,” said Luo.
The rapid sintering technology is being commercialized through HighT-Tech LLC, a UMD spinoff company with a focus on a range of high temperature technologies (hight-tech.com).
More about this research:
“This new method solves the key bottleneck problem in computation and AI-guided materials discovery,” said Mo. “We’ve enabled a new paradigm for materials discovery with an unprecedented accelerated pace.”
“We are delighted to see the pyrolysis time reduced from tens of hours to a few seconds, preserving the fine 3D-printed structures after fast sintering,” Zheng said.
####
About University of Maryland
The A. James Clark School of Engineering at the University of Maryland serves as the catalyst for high-quality research, innovation, and learning, delivering on a promise that all graduates will leave ready to impact the Grand Challenges (energy, environment, security, and human health) of the 21st century. The Clark School is dedicated to leading and transforming the engineering discipline and profession, to accelerating entrepreneurship, and to transforming research and learning activities into new innovations that benefit millions. Visit us online at eng.umd.edu and follow us on Twitter @ClarkSchool.
For more information, please click here
Contacts:
Melissa L. Andreychek
(301) 405-0292 |
Copyright © University of Maryland
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
3D & 4D printing/Additive-manufacturing
UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022
Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021
Possible Futures
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Chip Technology
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Discoveries
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Materials/Metamaterials
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
New protocol for assessing the safety of nanomaterials July 1st, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Announcements
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
Patents/IP/Tech Transfer/Licensing
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries July 22nd, 2022
Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022
Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022
Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022
Artificial Intelligence
Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022
‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022
Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |