Home > Press > Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes
![]() |
Olle Inganäs, professor emeritus, Linkoping University CREDIT Thor Balkhed |
Abstract:
Researchers at Linköping University have discovered a quantum phenomenon that influences the formation of free charges in organic solar cells. "If we can properly understand what's going on, we can increase the efficiency", says Olle Inganäs, professor emeritus.
Doctoral student Qingzhen Bian obtained unexpected results when he set up an experiment to optimise a solar cell material consisting of two light-absorbing polymers and an acceptor material. Olle Inganäs, professor emeritus in the Division of Biomolecular and Organic Electronics asked him to repeat the experiment to eliminate the possibility of measurement errors. Time after time, and in experiments carried out both at LiU and by colleagues in Lund, the same thing happened: a tiny periodic waveform lasting a few hundred femtoseconds appeared in the signature from the optical absorption as a photocurrent formed in the solar cell material. What was going on?
The explanation has been published in Nature Communications.
Some background: When light in the form of photons is absorbed in a semi-conducting polymer, an exciton forms. Excitons are bound electrone-hole pairs in the polymer. The electrons are not released, and the transport of charges, the photocurrent, does not arise. When the electron-donating polymer is mixed with a molecule that accepts electrons, the electrons can be released. The electrons then only need to take a small jump to become free, and the loss of energy is kept to a minimum. The holes and the electrons transport the photocurrent and the solar cell starts to produce electricity.
This has been well-known for a long time. However, the remarkable waveform then appeared in Qingzhen Bian's experiment.
"The only conceivable explanation is that coherence arises between the excited system and the separated charges. We asked the quantum chemists to look into this and the results we obtain in repeated experiments agree well with their calculations", says Olle Inganäs.
In the quantum scale, atoms vibrate, and they vibrate faster when they are heated. It is these vibrations that interact with each other in some way and with the excited system of electrons: the phases of the waves follow each other and a state of coherence arises.
"The coherence helps to create the charges that give the photocurrent, which takes place at room temperature. But we don't know why or how yet", says Olle Inganäs.
The same quantum coherence is found in the biological world.
"An intense debate is ongoing among biophysics researchers whether systems that use photosynthesis have learnt to exploit coherence or not. I find it unlikely that millions of years of evolution have not resulted in the natural world exploiting the phenomenon", says Olle Inganäs.
"If we understood better how the charge carriers are formed and how the process is controlled, we should be able to use it to increase the efficiency of organic solar cells. The vibrations depend on the structure of the molecule, and if we can design molecules that contribute to increasing the photocurrent, we can also use the phenomenon to our advantage", he says.
###
Principal source of funds for the research has been the Knut and Alice Wallenberg Foundation.
####
For more information, please click here
Contacts:
Olle Inganäs
46-132-81231
@liu_universitet
Copyright © Linköping University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Quantum Physics
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
News and information
Controlling chemical catalysts with sculpted light January 15th, 2021
Organic Electronics
Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021
Possible Futures
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Controlling chemical catalysts with sculpted light January 15th, 2021
Discoveries
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Materials/Metamaterials
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Stretching diamond for next-generation microelectronics January 5th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
Announcements
Controlling chemical catalysts with sculpted light January 15th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Controlling chemical catalysts with sculpted light January 15th, 2021
Energy
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021
Bionic idea boosts lithium-ion extraction January 1st, 2021
Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020
Solar/Photovoltaic
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020
Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020
Quantum nanoscience
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |