Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti and Partners Demo Potentially Scalable Readout System for Large Arrays of Quantum Dots: Results Hold promise for Fast, Accurate Single-Shot Readout ‘Of Foundry-Compatible Si MOS Spin Qubits’

Abstract:
Leti, a technology research institute of CEA Tech, and its research partners have demonstrated a potentially scalable readout technique that could be fast enough for high-fidelity measurements in large arrays of quantum dots.

CEA-Leti and Partners Demo Potentially Scalable Readout System for Large Arrays of Quantum Dots: Results Hold promise for Fast, Accurate Single-Shot Readout ‘Of Foundry-Compatible Si MOS Spin Qubits’

San Francisco, CA | Posted on December 12th, 2019

In a paper presented at IEDM 2019, the international research team reported its work on developing a toolkit on a SOI MOSFET-based prototyping platform that enables fast reading of the states of charge and spin. The study explored two gate-based reflectometry readout systems for probing charge and spin states in linear arrangements of MOS split-gate-defined arrays of quantum dots. The first system gives the exact number of charges entering the array and can help to initialize it. It can also read spin states, albeit in relatively small arrays. The second one gives the spin state in any quantum dot regardless of the array length, but is not useful for tracking charge number. Both readout schemes can be used complementarily in large arrays.

The study’s findings “bear significance for fast, high-fidelity, single-shot readout of large arrays of foundry-compatible Si MOS spin qubits,” the paper notes.

“The short-term efforts for our team going forward will be a joint optimization to increase speed and reliability of the readouts,” said CEA-Leti’s Louis Hutin, lead author on the paper. “The longer-term goal is to transfer this know-how on a larger scale and to less conventional architectures, featuring an optimized topology for error correction.”

Reflectometry is a technique that leverages signal reflections along a conducting line when an incident RF wave meets an impedance discontinuity. In CEA-Leti’s study, the probing line was connected to the MOS gate of a Si quantum dot. The system was prepared so that the load impedance depends on the spin state of the qubit, which enabled the team to monitor single spin events non-destructively and almost as they occurred.

In addition to CEA-Leti, the research team includes CNRS Institut Néel and CEA-IRIG, Grenoble, France; the Niels Bohr Institute, University of Copenhagen, Denmark; and Hitachi Cambridge Laboratory and Cavendish Laboratory, University of Cambridge, UK. Their paper is titled “Gate Reflectometry for Probing Charge and Spin States in Linear Si MOS Split-Gate Arrays”.

####

About CEA-Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.
Follow us on www.leti.fr/en and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact
Agency
+33 6 74 93 23 47

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Discoveries

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Tools

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

ORNL researchers advance performance benchmark for quantum computers January 3rd, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Quantum Dots/Rods

Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019

Machine learning at the quantum lab September 27th, 2019

Trapping and moving tiny particles using light September 24th, 2019

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

Alliances/Trade associations/Partnerships/Distributorships

Nexeon Updates on SUNRISE Project: Next Generation Battery Materials Project Exceeding Expectations January 6th, 2020

SET, Smart Equipment Technology, Introduces New Automatic Flip-Chip Bonder Dedicated to Device Production: Developed with CEA-Leti in IRT Nanoelec’s 3D Program, NEO HB Combines High Precision, Flexibility, and Short Cycle Time for Direct Hybrid Bonding November 21st, 2019

PROPHESEE Joins IRT Nanoelec 3D Integration Program Will Work with CEA-Leti, STMicroelectronics, Mentor, EVG, and SET to Develop New 3D Event-Based Vision System October 14th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Research partnerships

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project