Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A cheaper way to scale up atomic layer deposition

This is an artistic illustration of atomic layer deposition.

CREDIT
J. Luterbacher (EPFL)
This is an artistic illustration of atomic layer deposition. CREDIT J. Luterbacher (EPFL)

Abstract:
Atomic layer deposition (ALD) involves stacking layers of atoms on top of each other like pancakes. The atoms come from a vaporized material called a precursor. ASD is a well-established technique for manufacturing microelectronics like semiconductors and magnetic heads for sound recording, as well as sensors for bioengineering and diagnostics.

A cheaper way to scale up atomic layer deposition

Lausanne, Switzerland | Posted on November 15th, 2019

However, using ALD for depositing layers on larger surfaces has been a struggle, especially when it comes to manufacturing materials that must be kept at low cost, e.g. catalysts and solar devices.

"The sticking point is not necessarily making the right material but making it cheaply," explains Professor Jeremy Luterbacher, head of EPFL's Laboratory of Sustainable and Catalytic Processing (LPDC). "Coating larger surface areas with gas-phase methods requires long deposition times, and huge excesses of precursor, both of which increase costs," adds Benjamin Le Monnier, the PhD student who performed most of the research.

Now, the LPDC has developed a solution. Using ALD in a liquid phase, the scientists can produce materials indistinguishable from those made in the gas phase, with far cheaper equipment and no excess precursors.

Greater precision cuts costs

The researchers achieved this breakthrough by carefully measuring the ratio of the reacting precursors before injecting them onto the surface of a substrate. This way, they used exactly the right amount of precursor, with no leftovers that can cause unwanted reactions or be wasted.

The new method also reduces costs by requiring only standard lab equipment for chemical synthesis. It can also be easily scaled up to coat more than 150 g of material with the same cheap equipment, without loss of coating quality. The technique can even achieve coatings that are not possible using gas-phase ALD, e.g. by using non-volatile precursors.

"We believe that this technique could greatly democratize the use ALD on catalysts and other high surface area materials," says Luterbacher.

####

For more information, please click here

Contacts:
Nik Papageorgiou

41-216-932-105

@EPFL_en

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

2 Dimensional Materials

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

NUS scientists create world’s first monolayer amorphous film January 9th, 2020

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Chip Technology

Toward safer disposal of printed circuit boards January 16th, 2020

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

NUS scientists create world’s first monolayer amorphous film January 9th, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Discoveries

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Tools

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

ORNL researchers advance performance benchmark for quantum computers January 3rd, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project