Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications

This scanning electron microscope image of cardiomyocyte cells cultured on an array of electro-plasmonic nanoantennae shows the considerable size difference between the nanoantennae and electrogenic cells. On this device, 2.25 million wireless electro-plasmonic nanoelectrodes are integrated on a glass substrate.
(Image credit: Yanik Lab, UCSC)
This scanning electron microscope image of cardiomyocyte cells cultured on an array of electro-plasmonic nanoantennae shows the considerable size difference between the nanoantennae and electrogenic cells. On this device, 2.25 million wireless electro-plasmonic nanoelectrodes are integrated on a glass substrate. (Image credit: Yanik Lab, UCSC)

Abstract:
Researchers at UC Santa Cruz have developed ultrasensitive nanoscale optical probes to monitor the bioelectric activity of neurons and other excitable cells. This novel readout technology could enable scientists to study how neural circuits function at an unprecedented scale by monitoring large numbers of individual neurons simultaneously. It could also lead to high-bandwidth brain-machine interfaces with dramatically enhanced precision and functionality.

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications

Santa Cruz, CA | Posted on October 18th, 2019

Monitoring the electrical activity of neurons is conventionally done using microelectrode arrays, but these are difficult to implement at a large scale and offer limited spatial resolution. In addition, the electronic wiring required for readout is a major limitation of microelectrodes, according to Ali Yanik, assistant professor of electrical and computer engineering at UC Santa Cruz.



"The extremely limited bandwidth of the electronic wiring is a bottleneck created by the very nature of electrons," Yanik said. "We turn to photons because light offers billion-fold enhanced multiplexing and information carrying capabilities, the same reason why the telecommunication industry moved to fiber optics. By converting bioelectric signals to photons, we will be able to transmit large-bandwidth neural activity optically."



Yanik's lab at UCSC's Baskin School of Engineering, working with collaborators at the University of Notre Dame, has developed extracellular nanoprobes that enable ultrasensitive optical monitoring of electrophysiological signals. Other optical monitoring techniques require genetic modifications to insert fluorescent molecules into cell membranes, which rules out their use in humans.



Yanik's approach is similar to extracellular microelectrode techniques, except that the readout mechanism is optical and the probes have nanoscale dimensions. In addition, it yields a much brighter signal and higher signal-to-noise ratios than fluorescence-based probes.



"Harnessing the unparalleled multiplexing and information-carrying capability of light to dissect the neural circuitry and decrypt electrophysiological signals has been a goal of neuroscientists for nearly 50 years. We may have finally found a way to do that," Yanik said.



The new technology is described in a paper published October 18 in Science Advances. Ahsan Habib, a Ph.D. candidate in Yanik's lab, is first author of the paper.



Although the technology is still in the early stages of development, Yanik said it could open the door to a wide range of applications. Ultimately, he said, it may lead to powerful brain-machine interfaces, enabling the development of new brain-controlled prosthetic technologies for people with disabilities.



Yanik's optical nanoprobes are nanoscale devices (less than 100 nanometers in diameter) based on a novel metallic antenna structure coupled to a biocompatible polymer called PEDOT. This polymer is "electro-chromic," meaning its optical properties change in response to the local electric field. The antenna is a "plasmonic nanoantenna," meaning it uses nanoscale interactions of light and matter in a way analogous to a radio antenna. The result is an "electro-plasmonic nanoantenna" that provides reliable optical detection of local electric field dynamics with remarkably high sensitivity.



"The electro-plasmonic nanoantenna has a resonance frequency that changes in response to the electric field, and we can see that when we shine light on it, so we can read the signal remotely," Yanik explained.



The researchers performed a series of laboratory experiments to characterize and optimize the properties of the electro-plasmonic nanoantenna. They then tested its ability to monitor electrophysiological signals in cell cultures of cardiomyocytes (heart muscle cells which, like neurons, can generate electrical impulses). The results demonstrated real-time, all-optical detection of electrical activity in cardiomyocytes, with high signal-to-noise ratios.



Aside from not requiring genetic manipulations, the advantages of this technique over fluorescent probes include the very low light intensities needed, two to three orders of magnitude lower than the typical light intensities used for fluorescent voltage probes. In addition, the fluorescent molecules are susceptible to bleaching and generate disruptive oxygen free radicals.



Yanik described two possible approaches for using the optical nanoprobes to monitor neural activity in living animals, including humans. The probes could be integrated with an optical fiber into a flexible and biocompatible implant, or they could be synthesized as nanoparticles suspended in a colloidal solution, with surface proteins attached to enable the probes to bind to specific cell types.



"With the solution-based system, you could inject it into the bloodstream or into an organ, and the nanoprobes attach to the specific cell types you want to monitor," Yanik said. "We are just at the beginning stages of this, but I think we have a good foundation to build on."



An important consideration for using neural probes in living animals is the inherent immune response to foreign materials in the body. Previous studies have shown that coating electrodes with the biocompatible PEDOT polymer dramatically improves the long-term performance of microfabricated neural prosthetic devices. The size of implants also influences the immune response.



"The critical feature sizes are 10 to 15 microns. Recent studies have shown that smaller size implants lead to dramatically reduced inherent immune response," Habib said. "In this sense, our PEDOT-coated probes with nanoscale dimensions are particularly advantageous for long-term operation."



In addition to Habib and Yanik, the coauthors of the paper include UCSC graduate students Xiangchao Zhu and Maverick McLanahan, and Uryan Can and Pinar Zorlutuna at the University of Notre Dame. This work was supported by grants from the National Science Foundation.

####

For more information, please click here

Contacts:
Tim Stephens (831) 459-4352;

Ali Yanik at (831) 459-3491 or

Copyright © UC Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article:

Related News Press

News and information

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Imaging

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Bedside Analysis and Pathology Screening System to Be Demonstrated at CES 2020: CEA-Leti Will Demonstrate Next-Generation Technology that Enables Bedside Diagnosis of Disease at One-Tenth the Cost of Bulky Optical Microscopes December 20th, 2019

Brain-Computer Interfaces

Deep brain stimulation safer for patients with new MRI compatible electrode: Brain-computer interface advancements November 19th, 2019

Neuroprosthetic and Exoskeleton Allow Tetraplegic Patient to Move October 7th, 2019

Ultra-small nanoprobes could be a leap forward in human-machine interfaces July 4th, 2019

Leti and Taiwanese National Applied Research Laboratories Announce Collaboration for Microelectronics Innovation: Collaboration Will Facilitate Scientific and Technological Exchanges in Microelectronics, Sharing Platforms and Encouraging PhD Student Exchanges October 23rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Possible Futures

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2020 First Quarter Results January 24th, 2020

International Summit on Nanomedicine & Nanotechnology January 24th, 2020

How to keep boron inside cells during radiotherapy: a simple novel approach to cancer treatment January 24th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites donít need liquid water to work January 14th, 2020

Discoveries

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

Quantum physics: On the way to quantum networks January 24th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Old Molecule, New Tricks: Chemistry professors develop an electrochemical method for extracting uranium, and potentially other metal ions, from solution January 24th, 2020

Announcements

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

American Chemical Society names Philip Proteau as new editor-in-chief of the Journal of Natural Products January 24th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

A consensus statement establishes the protocols to study stability of perovskite photovoltaic devices January 24th, 2020

Tools

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

ORNL researchers advance performance benchmark for quantum computers January 3rd, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2020 First Quarter Results January 24th, 2020

How to keep boron inside cells during radiotherapy: a simple novel approach to cancer treatment January 24th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

A New Old Therapy: A controlled phage therapy can target drug-resistant bacteria while sidestepping potential unintended consequences January 13th, 2020

Research partnerships

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project