Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia

Abstract:
Keystone Nano, Inc., a biopharmaceutical company focused on improving cancer treatments through the application of novel treatments and nanotechnology, announced today that the U.S. Food and Drug Administration has approved the company’s Investigational New Drug (IND) Application to assess Ceraxa in the treatment of Acute Myeloid Leukemia (AML). This new approval leverages the company’s ongoing successful Ceraxa clinical trial by allowing the exploration of Ceraxa for cancer patients with AML.

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia

State College, PA | Posted on September 18th, 2019

The company’s AML initial drug testing will be conducted at the University of Virginia and Memorial Sloan Kettering. The clinical trial will enable the Keystone Nano to test safety and efficacy of Ceraxa to establish a safe dose level and begin gathering information about the its benefits as a cancer therapy.

“This approval allows us to test our therapy for patients with AML”, noted Jeff Davidson, Keystone Nano’s CEO. “We are excited by the Phase I solid tumor study results to date and the lack of adverse events in clinical testing and evidence of patient benefit, and we look forward to continuing to evaluate Ceraxa for human use. This is a significant step forward in the development of Ceraxa for the treatment of AML.”.

Ceraxa is a bioactive lipid that has shown efficacy in AML as well as in breast cancer, liver cancer, and pancreatic cancer. Evidence collected in a large number of research tests and now in the clinic has clearly demonstrated that Ceraxa kills cancer cells while leaving normal cells alone, providing treatment without undue toxicity.

The Phase I portion of the AML trial will recruit patients with to establish dosing and safety. AML kills approximately 11,000 people in the United States. There are currently limited effective therapies for this disease and the five-year survival rate is approximately 27%. Keystone Nano was recently awarded orphan drug status for the treatment of AML with ceramides in the United States.

####

About Keystone Nano, Inc.
Based in State College, PA, Keystone Nano is working at the interface between nanotechnology and the life sciences. In addition to developing Ceraxa, the company is working on additional products using NanoJackets, calcium phosphate nanoparticles that may be targeted to specific cell types, for a variety of medical applications including RNA delivery and immuno-therapy. The Company’s product pipeline is protected by a patent portfolio comprised of 11 patent families that has resulted in 14 issued patents and 8 pending applications to date. More detail can be found at Keystone’s web site, including links to numerous published papers that describe Keystone’s technology and the results to date.

For more information, please click here

Contacts:
Jeff Sirianni

Managing Member
Monarch Solutions, LLC
Mobile: (703) 728.6837
www.Monarchsls.com

Copyright © Keystone Nano, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Keystone has a 90 second animation that describes its technology at:

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Videos/Movies

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Govt.-Legislation/Regulation/Funding/Policy

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Nanomedicine

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Study reveals new mode of triggering immune responses July 15th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanobiotechnology

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Study reveals new mode of triggering immune responses July 15th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project