Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Sticker makes nanoscale light manipulation easier to manufacture

Researchers have given sensors the ability to manipulate light better, thanks to a sticker in the center of this device. (Purdue University image/Bongjoong Kim)
Researchers have given sensors the ability to manipulate light better, thanks to a sticker in the center of this device. (Purdue University image/Bongjoong Kim)

Abstract:
Deterministic Nanoassembly of Quasi-Three-Dimensional Plasmonic Nanoarrays with Arbitrary Substrate Materials and Structures

Bongjoong Kim,† Jiyeon Jeon,‡ Yue Zhang,§ Dae Seung Wie,† Jehwan Hwang,‡ Sang Jun Lee,‡ Dennis E. Walker, Jr.,∥ Don C. Abeysinghe,⊥ Augustine Urbas,⊥ Baoxing Xu,*,§ Zahyun Ku,*,⊥ and Chi Hwan Lee*,†,#,∇

† School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States

‡ Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon, Korea

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States
∥ Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, United States

⊥Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, United States

#Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States

∇Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States

DOI: 10.1021/acs.nanolett.9b02598

Guided manipulation of light through periodic nanoarrays of three-dimensional (3D) metal–dielectric patterns provides remarkable opportunities to harness light in a way that cannot be obtained with conventional optics yet its practical implementation remains hindered by a lack of effective methodology. Here we report a novel 3D nanoassembly method that enables deterministic integration of quasi-3D plasmonic nanoarrays with a foreign substrate composed of arbitrary materials and structures. This method is versatile to arrange a variety of types of metal–dielectric composite nanoarrays in lateral and vertical configurations, providing a route to generate heterogeneous material compositions, complex device layouts, and tailored functionalities. Experimental, computational, and theoretical studies reveal the essential design features of this approach and, taken together with implementation of automated equipment, provide a technical guidance for large-scale manufacturability. Pilot assembly of specifically engineered quasi-3D plasmonic nanoarrays with a model hybrid pixel detector for deterministic enhancement of the detection performances demonstrates the utility of this method.


Sticker makes nanoscale light manipulation easier to manufacture

West Lafayette, IN | Posted on August 27th, 2019

Human pathogens, such as HIV and viruses causing respiratory tract infection, have molecular fingerprints that are difficult to distinguish. To better detect these pathogens, sensors in diagnostic tools need to manipulate light on a nanoscale.

But there isn’t a good way to manufacture these light manipulation devices without damaging the sensors. Purdue University engineers have a solution: Stickers.

In a paper published in Nano Letters, the team integrated light manipulation devices called 3D plasmonic nanoarrays onto peelable films that can stick to any surface. They tested the sticker-nanoarray’s capabilities on the lenses of sensors, which make up conventional imaging systems.

The Air Force Research Laboratory supported the work and validated the sticker’s performance and properties.

“Unlike any existing approaches, the entire process occurs in distilled water at room temperature without the chemical, thermal or mechanical treatments that can damage sensitive surfaces, such as a sensor lens,” said Chi Hwan Lee, an assistant professor of biomedical engineering and mechanical engineering at Purdue.

To turn the nanoarrays into a sticker, the researchers built them into a film on a silicon wafer. When submerged in distilled water, the film peels cleanly from the wafer, allowing the wafer to be reused. The film can then stick to the desired surface without damaging it.

“Because this methodology allows 3D plasmonic nanoarrays to physically separate from a donor wafer and transfer over to another surface without defect, it offers a major cost- and time-saving factor in the manufacturing scheme,” Lee said.

The researchers also demonstrated that the process works for various classes of 3D plasmonic nanoarrays in both lateral and vertical configurations, offering more functionality.

Lee’s lab plans to further develop these sticker-nanoarrays for biological sensing applications, such as for protein detection in clinical diagnostics. The lab has already created electronic stickers that serve as bio-patches for drug delivery. They also can enable ordinary objects to wirelessly connect to a network, creating an “Internet of Things.”

The method has been patented via the Purdue Research Foundation Office of Technology Commercialization. This research aligns with Purdue's Giant Leaps celebration, acknowledging the university’s global advancements made in health, longevity and quality of life as part of Purdue’s 150th anniversary. This is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

####

For more information, please click here

Contacts:
Writer: Kayla Wiles, 765-494-2432,

Source: Chi Hwan Lee, 765-494-6212,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Imaging

Developing new techniques to improve atomic force microscopy June 26th, 2020

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution June 19th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Oxford Instruments Asylum Research Announces New “Relate” Software for Correlative Imaging with Atomic Force Microscopy and Electron Microscopy June 12th, 2020

Internet-of-Things

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications November 29th, 2019

GLOBALFOUNDRIES and Racyics GmbH Demonstrate Ultra-Low-Power Microcontroller for the Internet of Things: Record silicon results to be presented tomorrow at GTC 2019 in Munich, made possible by the adaptive body biasing capability on GF’s 22FDX® platform, along with Racyics’ IP October 11th, 2019

GLOBALFOUNDRIES Brings New Level of Security and Protection on 22FDX Platform for Connected Systems:22FDX security solution aims to protect against physical tampering and attacks for cellular Internet of Things (IoT) devices October 11th, 2019

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Nanomedicine

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Wearable patch may provide new treatment option for skin cancer June 18th, 2020

Tiny pump builds polyrotaxanes with precision: Artificial molecular pump gives precise control for materials design June 12th, 2020

Sensors

Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture. June 19th, 2020

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution June 19th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Making quantum 'waves' in ultrathin materials: Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale May 15th, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Nanobiotechnology

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Wearable patch may provide new treatment option for skin cancer June 18th, 2020

Prodigiosin-based solution has selective activity against cancer cells: A new nanoformulation was described by Kazan University's Bionanotechnology Lab in Frontiers in Bioengineering and Biotechnology June 12th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project