Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-thermometer takes temperature inside cells: Rice University chemistry lab uses fluorescence of molecular motors to sense conditions

Rice University chemists modified BODIPY molecules to serve as nano-thermometers inside cells. The chart on the left is a compilation of fluorescent lifetime micrographs showing the molecules’ response to temperature, in Celsius. At right, the structure of the molecule shows the rotor, at bottom, which is modified to restrict 360-degree rotation. (Credit: Meredith Ogle/Rice University)
Rice University chemists modified BODIPY molecules to serve as nano-thermometers inside cells. The chart on the left is a compilation of fluorescent lifetime micrographs showing the molecules’ response to temperature, in Celsius. At right, the structure of the molecule shows the rotor, at bottom, which is modified to restrict 360-degree rotation. (Credit: Meredith Ogle/Rice University)

Abstract:
How do you know a cell has a fever? Take its temperature.

That's now possible thanks to research by Rice University scientists who used the light-emitting properties of particular molecules to create a fluorescent nano-thermometer.

Nano-thermometer takes temperature inside cells: Rice University chemistry lab uses fluorescence of molecular motors to sense conditions

Houston, TX | Posted on August 23rd, 2019

The Rice lab of chemist Angel Martí revealed the technique in a Journal of Physical Chemistry B paper, describing how it modified a biocompatible molecular rotor known as boron dipyrromethene (BODIPY, for short) to reveal temperatures inside single cells.

The molecule is ideally suited to the task. Its fluorescence lasts only a little while inside the cell, and the duration depends heavily on changes in both temperature and the viscosity of its environment. But at high viscosity, the environment in typical cells, its fluorescence lifetime depends on temperature alone.

It means that at a specific temperature, the light turns off at a particular rate, and that can be seen with a fluorescence-lifetime imaging microscope.

Martí said colleagues at Baylor College of Medicine challenged him to develop the technology. "Everybody knows old thermometers based on the expansion of mercury, and newer ones based on digital technology," he said. "But using those would be like trying to measure the temperature of a person with a thermometer the size of the Empire State Building."

The technique depends on the rotor. Martí and Rice graduate student and lead author Meredith Ogle constrained the rotor to go back and forth, like the flywheel in a watch, rather than letting it rotate fully.

"It pretty much wobbles," Martí said.

"What we measure is how long the molecule stays in the excited state, which depends on how fast it wobbles," he said. "If you increase the temperature, it wobbles faster, and that shortens the time it stays excited."

The effect, Martí said, is conveniently independent of the concentration of BODIPY molecules in the cell and of photobleaching, the point at which the molecule's fluorescent capabilities are destroyed.

"If the environment is a bit more viscous, the molecule will rotate slower," Martí said. "That doesn't necessarily mean it's colder or hotter, just that the viscosity of the environment is different.

"We found out that if we constrain the rotation of this motor, then at high viscosities, the internal clock -- the lifetime of this molecule -- becomes completely independent of viscosity," he said. "This is not particularly common for these kind of probes."

Martí said the technique might be useful for quantifying the effects of tumor ablation therapy, where heat is used to destroy cancer cells, or in simply measuring for the presence of cancers. "They have a higher metabolism than other cells, which means they're likely to generate more heat," he said. "We'd like to know if we can identify cancer cells by the heat they produce and differentiate them from normal cells."

Co-authors of the paper are Rice graduate student Ashleigh Smith McWilliams; Matthew Ware, a scientist at Celgene Co., San Diego; Steven Curley, a surgeon at Christus Mother Frances Hospital, Tyler, Texas; and Stuart Corr, an assistant professor of surgical research and director of surgical innovation and technology development at Baylor College of Medicine.

The Dunn Collaborative Research Grant Program and the Optical Imaging and Vital Microscopy Core at Baylor College of Medicine, funded by the National Institutes of Health, supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728


Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Angel Martí Group:

Rice Department of Chemistry:

Wiess School of Natural Sciences:

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Cancer

Wearable patch may provide new treatment option for skin cancer June 18th, 2020

Prodigiosin-based solution has selective activity against cancer cells: A new nanoformulation was described by Kazan University's Bionanotechnology Lab in Frontiers in Bioengineering and Biotechnology June 12th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Multi-functionalization of graphene for molecular targeted cancer therapy April 24th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

The nature of nuclear forces imprinted in photons June 30th, 2020

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Nanomedicine

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Wearable patch may provide new treatment option for skin cancer June 18th, 2020

Tiny pump builds polyrotaxanes with precision: Artificial molecular pump gives precise control for materials design June 12th, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

The nature of nuclear forces imprinted in photons June 30th, 2020

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

Nanobiotechnology

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Wearable patch may provide new treatment option for skin cancer June 18th, 2020

Prodigiosin-based solution has selective activity against cancer cells: A new nanoformulation was described by Kazan University's Bionanotechnology Lab in Frontiers in Bioengineering and Biotechnology June 12th, 2020

Research partnerships

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project