Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam

Abstract:
Deben, a leading provider of in-situ testing stages together with innovative accessories and components for microscopy, reports on how the University of Aberdeen’s School of Engineering use X-ray microcomputed tomography to observe syntactic foam and its compressive damage mechanisms using the Deben CT5000 μXCT stage.

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam

Woolpit, UK | Posted on June 14th, 2019

In recent work the School of Engineering at the University of Aberdeen carried out in situ experiments to study the failure mechanisms of syntactic foam, using both X-ray microcomputed tomography with uniaxial compression. X-ray microcomputed tomography was used to image the foam whilst it was under compressive strain to obtain 3D images of the internal microstructure and the changes that occurred.



The material studied (polymer matrix syntactic foams) is a low-density composite material. The foam is made by randomly filling hollow particles into a material matrix and is categorised as closed-cell, this is due to fact that the particles are not connected and that each pore is enclosed in the matrix. The properties of syntactic foams are highly influenced by hollow particles. Syntactic foam microstructure is determined by the particle; material, volume fraction and wall thickness. Commonly the hollow particles in polymer matrix syntactic foams are fabricated from glass, ceramic, carbon and fly ash cenospheres. A real life application of syntactic foams is their use as insulation in the offshore oil industry. The foam helps combat the cooler temperatures and higher pressure during the extraction of oil from further out at sea or at greater depths.



The material used during these studies was syntactic foam which was provided by Trelleborg (a global engineering group focused on polymer technology). The foam featured hollow glass spheres embedded within an epoxy matrix. Prismatic blocks were machined from a bar measuring 10x10x10mm³. To ensure flat surfaces and to reduce stress concentrations the surfaces of the specimen were ground using abrasive paper.



The X-ray microcomputed tomography was carried out on the ZEISS VersaXRM-410. A microtension/compression testing stage was mounted to the X-ray machines stage. The experimental configuration can be seen in Figure 1. The sample was loaded into the Deben CT5000 inside the 3mm vitreous glassy carbon tube. The dimensions of the sample were carefully determined to ensure that the load needed to reach beyond the elastic limited would not exceed the loadcells capacity. The dimensions also ensured that there was satisfactory X-ray transmission to obtain high-resolution images. The samples were subjected to unconstrained, uniaxial, quasi-static compression test and scanned at various different levels of strain. The sample was placed within the grips of the testing machine and was secured at the top and bottom. The top grip remained stationary and the bottom grip moved up to compress the sample. The strain was held constant during each scan and then increased up before the next scan was taken. The Deben stage control software allowed the applied load and displacement to be controlled.

####

About Deben
Deben are a precision engineering company, established in 1986. They specialise in the field of in-situ tensile testing, motion control and specimen cooling for microscopy applications. The main product groups include: motor control systems, in-situ micro-tensile stages, Peltier heating & cooling stages, detectors for SEMs and electro-static beam blankers. The company also makes custom and OEM versions of these products to specifically meet customer requirements.

Deben provide consultancy, design and prototype manufacturing services. In house facilities include SolidWorks and SolidEdge 3D CAD and COSMOS finite element analysis software, CNC machining, electronics design and manufacture and software design using Visual C++, Microsoft.net and DirectX.

Deben UK Ltd. is a subsidiary company of UK based Judges Scientific plc.

For more information, please click here

Contacts:
Deben UK Limited

Brickfields Business Park

Old Stowmarket Road

Woolpit, Bury St Edmunds

Suffolk IP30 9QS, UK

T +44 (0)1359 244870

www.deben.co.uk



Written by: Abigail Royal (Sales and Marketing Administrator)

Sales Contact: Paul Gadsby (Sales Director)

Copyright © Deben

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project