Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Making graphene-based desalination membranes less prone to defects, better at separating

Abstract:
By embedding supporting carbon nanotube networks, researchers have developed a way to improve the performance of thin graphene-based membranes designed for water desalination, making it less likely they crack or tear and thus undermine the entire desalination system. According to tests of the material, the new graphene hybrid membrane shows high water permeance and salt separation performance at previously unattainable scales.

Making graphene-based desalination membranes less prone to defects, better at separating

Washington, DC | Posted on June 13th, 2019

"The study brings the membrane area from micrometer-scale to centimeter-scale, which is large enough to be tested in a bench-scale membrane system, representing a major milestone in scaling up nanoporous graphene membranes," writes Baoxia Mi in a related Perspective. An ideal material for removing salt from seawater to create potable freshwater should be thin, strong enough to withstand extended use and contain uniformly sized and distributed pores for efficient ion separation. Nanoporous 2D graphene membranes are well suited for this purpose and have experimentally demonstrated exceptionally fast and efficient desalination. However, as the surface area of these membranes increases, they become more prone to defects and damage, which significantly reduces their ability to separate unwanted substances from water. Because of this, the use of ultrathin graphene nanomesh materials has been limited to proof-of-concept demonstrations using micrometer-scale flakes. Here, Yanbing Yang and colleagues present a method for fabricating graphene membranes that overcome these limitations. Yang et al. developed an atomically thin graphene nanomesh (GNM) reinforced by an interwoven network of single-walled carbon nanotubes (SWNT). The SWNTs physically partition the GNM material to form a structural framework - not unlike the Voronoi-like cells of a dragonfly wing - which provides mechanical stability at centimeter scales. Furthermore, the network of SWNT blocks the spread of cracks or tears in the graphene, effectively constraining any damage to a small area. Further testing of the material shows its highly efficient desalination capabilities. According to Yang et al., because there are no fundamental limitations in producing large sheets of the SWNT-reinforced graphene, membranes could possibly be readily scaled up to meter scales. In the related Perspective, Mi notes that despite the "intriguing work" by this team, the technology still has a way to go before it can be implemented in real-world desalination systems.

####

For more information, please click here

Contacts:
Science Press Package Team

202-326-6440

Copyright © American Association for the Advancement of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Graphene/ Graphite

Nanometrics and Rudolph Technologies to Jointly Participate in the 11th Annual CEO Investor Summit 2019 June 27th, 2019

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Possible Futures

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts April 26th, 2019

Discoveries

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Announcements

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Water

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater March 13th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project