Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance

Structure of the complex containing Rev1 and JH-RE-06. The two copies of the Rev1 protein are shown in dark and light blue, while the small molecule JH-RE-06 wedged in between is shown in bright pink.

CREDIT
Pei Zhou
Structure of the complex containing Rev1 and JH-RE-06. The two copies of the Rev1 protein are shown in dark and light blue, while the small molecule JH-RE-06 wedged in between is shown in bright pink. CREDIT Pei Zhou

Abstract:
Scientists have discovered a small molecule drug that may stop cancer cells from becoming resistant to chemotherapy. Drug resistance is a major cause of cancer relapse and is responsible for as much as 90% of deaths related to the disease.

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance

Durham, NC | Posted on June 7th, 2019

The new compound, which was tested in an animal model of melanoma, could make current chemotherapies more powerful. It works by thwarting cancer's ability to survive, evolve, and adapt to the DNA damage created by traditional chemotherapy drugs like cisplatin.

"Chemotherapies are often effective the first time around, but then the cancers mutate and become resistant to that drug, and the next, and the next," said senior study co-author Pei Zhou, Ph.D., a professor of biochemistry at Duke University School of Medicine.

"It reminds me of Boggarts, those shapeshifting creatures from Harry Potter that morph from one scary thing to another. The beauty of this approach is that you essentially freeze the Boggart in its current form, so you can kill it off for good."

The study was published June 6 in Cell.

In their simplest form, cancer cells are normal cells that are growing out of control. Each time these cells divide, the DNA within them must replicate to generate new copies to go inside each new cell. The first chemotherapy drugs were based on the rationale that rapidly growing cancer cells would be more sensitive to damage to their DNA. Drugs like cisplatin are designed to damage DNA, causing the sensitive replication machinery normally tasked with copying each strand to stall. If DNA replication is stalled for too long, cell division halts, and cells die.

The strategy is brutal and effective, even curative in some cases. But long-term, it often fails, as cancer cells figure out a way to proliferate even in the presence of DNA damage.

"The cancer cells often swap out the high fidelity replication machinery, which usually does the copying, with a sloppy replacement that covers up the lesions and moves on," said Zhou. "As a result, the cells survive, but with mutations in their DNA."

Because this process, known as translesion synthesis, is a major cause of cancer drug resistance, it has become a major area of study in cancer research. Scientists have identified a key protein involved, named Rev1, and have even disrupted it through genetic means -- works done in the laboratories of Graham C. Walker and Michael T. Hemann at MIT, both senior co-authors of this study. However, attempts to do the same with small molecules had never succeeded, presumably because the protein lacked an obvious binding pocket that a potential drug could exploit.

In this study, Zhou and his collaborators at Duke, MIT, and the University of Rhode Island decided to try their luck at finding a small molecule to block or inhibit Rev1. They screened 10,000 small molecule compounds, and were surprised to find that one -- a molecule called JH-RE-06 -- appeared to do the trick.

The researchers used a technique called x-ray crystallography to visualize the unexpected interactions between Rev1 and JH-RE-06. They found that when Rev1 interacts with JH-RE-06, it pairs up or dimerizes with another copy of itself, creating a binding pocket where there wasn't one before. When Rev1 is locked up in this dimer, it can no longer help cancer cells survive and attain their shape-shifting powers.

The researchers then tested the new molecule in human cancer cell lines and showed that it enhanced the ability of several forms of chemotherapy to kill cells, while also suppressing their ability to mutate in the presence of DNA-damaging drugs. Finally, they tested it in a mouse model of human melanoma. They found that not only did the tumors stop growing in mice treated with a combination of cisplatin and JH-RE-06, but also that those mice survived longer.

Senior study co-author Jiyong Hong, PhD, a professor of chemistry at Duke, said that they are currently creating versions of JH-RE-06 that have enhanced pharmacologic properties that could make it an even more attractive drug. "This is a great proof of principle that it is possible to target this protein, but we have a lot of work to do to turn this lead compound into a viable candidate that we can take to the clinic."

###

The lead authors of the paper are former Duke graduate student Jessica Wojtaszek, MIT postdoc Nimrat Chatterjee, and Duke graduate student Javaria Najeeb.

The research was supported in part by grants from the National Cancer Institute (CA191448 and CA213042), the National Institutes of Environmental Health Sciences (ES028303 and ES028865), the Alexander and Margaret Stewart Trust, Duke University, and Center for the Precision Medicine at MIT.

####

For more information, please click here

Contacts:
Robin Ann Smith

919-681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: "A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy," Jessica L. Wojtaszek, Nimrat Chatterjee, Javaria Najeeb, Azucena Ramos, Minhee Lee, Ke Bian, Jenny Y. Xue, Benjamin A. Fenton, Hyeri Park, Deyu Li, Michael T. Hemann, Jiyong Hong, Graham C. Walker, and Pei Zhou. Cell, June 6, 2019. DOI: 10.1016/j.cell.2019.05.028:

Related News Press

News and information

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Cancer

Novel nanogels hold promise for improved drug delivery to cancer patients: 'Precision Medicine' approach underpins UT Austin engineers' development of multifunctional nanogel September 27th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Nanotherapy: the controlled delivery of chemotherapeutics to fight cancer stem cells September 6th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Possible Futures

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanomedicine

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

SUNY Poly Receives $75,000 National Science Foundation Award for Development of Bioengineered and Improved Blood Thinner: Grant is Part of Collaboration with TEGA Therapeutics, Inc. Supporting Research Leading to Engineered Cells and Production of a Scalable Heparin Product October 8th, 2019

Discoveries

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Announcements

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Physics: DNA-PAINT super-resolution microscopy at speed: Optimized DNA sequences allow for 10-times faster image acquisition in DNA-PAINT October 11th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: 'Precision Medicine' approach underpins UT Austin engineers' development of multifunctional nanogel September 27th, 2019

Nanobiotechnology

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Physics: DNA-PAINT super-resolution microscopy at speed: Optimized DNA sequences allow for 10-times faster image acquisition in DNA-PAINT October 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project