Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts

Abstract:
Graphene nanotube-reinforced anti-static polyurethane shafts are becoming the new industry standard and help manufacturers keep production costs down and ensure occupational safety. Introducing as little as 0.03% of nanotubes is sufficient to impart uniform anti-static properties to polyurethane while maintaining its key properties.

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts

Luxembourg | Posted on April 26th, 2019

Graphene nanotubes are one of the most advanced conductive additives. They are widely used in polyurethanes in the production of shafts and rollers for various industries. High performance characteristics and stable anti-static properties of shafts with nanotubes make them the new industry standard.



Static electricity accumulation threatens industrial facilities equipped with production or transportation lines. The friction between a conveyor belt and the shaft that sets it in motion results in near-constant generation of electrostatic charge that can lead to a halt in production. Adhesion of such materials as fabric and film or a paper jam can also be responsible for a production line stoppage and related loses.



Another problem created by the static charge is adherence of dust. This increases the rejection rate when handling white or light-colored articles, for example, fabric, fiber or packaging. In addition, workers are constantly exposed to unpleasant electric shocks.



These problems lead a growing number of manufacturers to switch to anti-static polyurethane. To impart anti-static properties to a nonconductive polymer, conductive fillers must be added during the material manufacturing process. Until recently, carbon black and special mineral/organic fillers were typically used as a conductive additive. However, the required high concentrations of these additives in the range of 10–15% of the total weight of the material lead to a loss of strength and reduced life cycle of products.



When used in polyurethanes as an anti-static additive, graphene nanotubes demonstrate outstanding results. In order to obtain volume resistivity within the range of 10^9–10^4 Ω·cm, it is sufficient to add graphene nanotubes in a working concentration that is 100 times less than that of ammonium salts and 500 times less than that of carbon black. Moreover, graphene nanotubes provide a wider range of resistance levels as compared to ammonium salts. Unlike carbon black, they achieve uniform distribution in materials, preserve the original physical and mechanical properties and leave no black “smearing” traces on the surface of output products (fabric, paper, film, etc.) thus preventing the occurrence of rejects.



The conductivity level obtained with the help of nanotubes neither degrades over time nor depends on humidity or temperature. This is especially important for industrial shafts, as they operate under conditions of continuous friction heating. Nanotubes also prevent dust gathering on equipment.



A concentrate of pre-dispersed graphene nanotubes recently developed by OCSiAl has made it possible to overcome the difficulties previously associated with the distribution of nanotubes in polyurethane systems and is already being successfully applied in industrial productions. By introducing as little as 0.3 wt.% of TUBALL MATRIX nanotube-based concentrate when manufacturing polyurethane shafts, Unikom-Service Research & Production Company, a Russian enterprise, succeeded in manufacturing products with permanent and stable anti-static properties in the range of 10^9–10^7 Ω·cm. This also enabled them to manufacture products with electrical conductivity properties and resistance values in the range of 10^7–10^5 Ω·cm that do not have “hot spots” while retaining important strength characteristics.



Unikom-Service has developed technologies for producing anti-static polyurethane materials with a wide range of hardness: from Shore A hardness of 60 units to Shore D hardness of 70 units and on different bases such as TDI, MDI, NDI.



Material

System

Hardness

Volume resistivity, Ω·cm (with TUBALL MATRIX applied)

UNIKSPUR 1А095TA

TDI-Ether

94 A

5 x 10^5

UNIKSPUR 7А700TA

TDI-Ether

70 D

4 x 10^6

UNIKSPUR 1B095TA

TDI-Ester

93 A

4 x 10^5

UNIKSPUR 4B075TA

Quasi-MDI-Ester

75 A

4 x 10^5

UNIKSPUR 2B092SТА

NDI

92 A

3 x 10^6



A Russian manufacturer of polyurethane shafts for winding wool fiber is another successful example. They use 0.5 wt.% of pre-dispersed nanotube concentrate to achieve a uniform and stable surface resistivity level of 10^8 Ω/sq.



TUBALL graphene nanotubes manufactured by OCSiAl find a growing number of applications in the polyurethane market. They are already used in the production of industrial wheels, rollers and scraper pigs for various industries. Due to their high performance, these products are in high demand in the industry.

####

For more information, please click here

Contacts:
Anastasia Zirka
PR & Advertising manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Graphene/ Graphite

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Industrial

Building next gen smart materials with the power of sound May 28th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project