Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes

© Wiley-VCH
© Wiley-VCH

Abstract:
Organic photovoltaics have achieved remarkably high efficiencies, but finding optimum combinations of materials for high-performance organic solar cells, which are also economically competitive, still presents a challenge. Researchers from the United States and China have now developed an innovative interlayer material to improve device stability and electrode performance. In the journal Angewandte Chemie, the authors describe their fullerene-spiked, readily processable ionene polymer, which boosts the power conversion efficiency of organic solar cells.

Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes

Hoboken, NJ | Posted on March 29th, 2019

In contrast to common silicon-based solar cells, organic photovoltaics (OPVs) involve organic molecules in solar power generation. Materials in OPVs are abundant and processable, cheap and lightweight, and the modules can be made flexible and with tunable properties. The major disadvantage of such materials is that achieving longevity and high performance requires elaborate settings and architectures. Optimized combinations of materials that match the electrodes remain elusive.

Silver or gold metals form air-stable, processable cathodes, but they also lower the device potential. To overcome this problem, Yao Lui at Beijing University of Chemical Technology (China), and Thomas Russell and Todd Emrick at the University of Massachusetts, Amherst (USA), and their research groups, have developed a novel polymeric material to serve as an interlayer between the electrode and the active layer. This interlayer must be conductive and must lower the work function of the cathode by providing an interfacial dipole.

As an interlayer material, the researchers investigated a novel class of charged polymers, the ionene polymers. "Ionene polymers are polycations in which the charged moieties are positioned within the polymer backbone rather than as pendant groups," the authors explain. This leads to a higher charge distribution than in conventional cationic polymers, and in addition, better tunability. Ionene polymers provide a useful interfacial dipole, but alone, they lack the required conductivity.

Therefore, the authors included fullerenes in the structural framework of the polymer layer. So-called "bucky balls"--fullerene spheres made solely from carbon--are already used as common acceptor molecules in OPV devices. They are highly conductive and have many other favorable properties.

The scientists prepared the fullerene-ionene interlayer material by innovating on conventional step-growth polymerization chemistry with novel, functional monomers. They assembled the OPV devices and included an interlayer. The result was an impressive boost in power conversion efficiency--on average three-fold--when compared to devices without the interlayer. Efficiencies of over 10% point to further applicability of these modular devices.

This work shows that a relatively simple modification to the composition of materials can improve the efficiency in organic electronics and can overcome intrinsic problems related to the combination of hard (electrodes) and soft (active-layered) materials.

###

About the Author

Thomas P. Russell is the Silvio O. Conte Distinguished Professor at the Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA (USA). His research is focused on the interesting properties of polymers, including the morphology of polymer-based photovoltaic materials. Todd Emrick is a Professor in the Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA (USA), and he investigates synthetic organic/polymer chemistry. Yao Liu is a Professor at Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing (China). His research is focused on organic electronics and functional materials in devices.

https://www.pse.umass.edu/faculty/researchgroup/russell

####

For more information, please click here

Contacts:
Mario Mueller

Copyright © Wiley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Organic Electronics

Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes March 30th, 2020

Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors November 15th, 2019

Electrifying science: New study describes conduction through proteins November 1st, 2019

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

Possible Futures

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

OCSiAl becomes the largest European supplier of single wall carbon nanotubes with its upgraded REACH registration April 23rd, 2020

Double-walled nanotubes have electro-optical advantages :Rice University calculations show they could be highly useful for solar panels March 27th, 2020

Groovy key to nanotubes in 2D: Why do carbon nanotubes line up? They're in a groove March 16th, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Energy

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Transporting energy through a single molecular nanowire: Why single wires are superior to bundles May 8th, 2020

Scientists have created new nanocomposite from gold and titanium oxide: Scientists use lasers and gold particles to turn titanium oxide into nanocomposite for photocatalysts May 8th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

Solar/Photovoltaic

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Transporting energy through a single molecular nanowire: Why single wires are superior to bundles May 8th, 2020

Scientists have created new nanocomposite from gold and titanium oxide: Scientists use lasers and gold particles to turn titanium oxide into nanocomposite for photocatalysts May 8th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project