Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Oxford Instruments and partners launch EU Horizon 2020 project ULISSES: Air sensors for everyone, everywhere

Abstract:
Oxford Instruments Plasma Technology collaborate with EU partners to develop a new class of on-chip gas sensing technology within project ULISSES. The collaboration aims to develop a new class of miniaturized optical gas sensors on a chip, enabling low-cost distributed sensing nodes for the Internet of Things (IoT).

Stockholm, Sweden – Feb. 20, 2019 – Senseair AB, AMO GmbH, KTH Royal Institute of Technology, Oxford Instruments Plasma Technology, Graphenea Semiconductor SL, Universität der Bundeswehr München, Catalan Institute of Nanoscience and Nanotechnology, and SCIPROM Sàrl announced today the launch of the ULISSES project, a European collaboration to develop a new class of miniaturized optical gas sensors on a chip. The project partners will collaborate to combine silicon photonics with 2D materials, to enable fully integrated optical gas sensing nodes for the IoT. These nodes will be able to be manufactured in large volumes at low cost and achieve performance improvements in terms of size and power consumption. The development would enable personal gas sensors embedded in wearable devices, as well as public infrastructure such as street lighting, buses and taxis, or even in small unmanned aerial vehicles. The new technology aims to empower the general public to monitor and put demands on their air quality.

Oxford Instruments and partners launch EU Horizon 2020 project ULISSES: Air sensors for everyone, everywhere

Yatton, UK | Posted on March 7th, 2019

Gas sensors are already widely used in industry and agriculture, to ensure safety of personnel and to monitor and automate processes. However, the rising general awareness of the importance of urban indoor and outdoor air quality is now driving demand for accurate, low-cost and mobile gas sensor technology. Optical gas sensors offer the highest sensitivity, stability and specificity in the market, however, their current cost, power consumption and size hinder them from being widely employed by the general public. ULISSES technology will enable compact, low-cost and low-power gas sensor nodes to be networked for comprehensive and real time monitoring of air quality in urban areas. This new approach will provide valuable information to city planners, employers and landlords to ensure a healthy indoor and outdoor environment.

By leveraging recent breakthroughs of the ULISSES partners on waveguide integrated 2D materials-based photodetectors, 1D nanowire mid-IR emitters, and mid‏-IR waveguide-based gas sensing, ULISSES targets a three-order-of-magnitude reduction in sensor power consumption, thus permitting maintenance-free battery powered operation for the first time. Furthermore, ULISSES will implement a new edge-computing self-calibration algorithm that leverages node-to-node communications to eliminate the main cost driver of low-cost gas sensor fabrication and maintenance.

Over the next four years, Senseair AB, a leading gas sensor supplier, will coordinate the ULISSES project with the help of SCIPROM. Using systems developed by Oxford Instruments Plasma Technology, AMO will fabricate the silicon photonics chips with integrated silicon waveguides and 2D material-based photodetectors, developed by KTH and AMO. The 2D materials will be provided by the Universität der Bundeswehr München and Graphenea. Senseair will lead the different application demonstrators and prepare the sensors for IoT applications together with KTH. ICN2 will provide modelling and simulation support, in order to optimize sensor design and efficiency.

For more information on ULISSES, please visit www.ulisses-project.eu.

The ULISSES project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825272 (ULISSES).



- Ends -

Issued for and on behalf of Oxford Instruments Plasma Technology

####

For more information, please click here

Contacts:
Claire Critchell BA (Hons), ACIM
Marketing Communications Manager

Oxford Instruments Plasma Technology
North End, Yatton, Bristol BS49 4AP, UK
Tel: +44 (0) 1934 837053
plasma.oxinst.com

Copyright © Oxford Instruments Plasma Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

2 Dimensional Materials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Possible Futures

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Sensors

Microrobots show promise for treating tumors: Caltech researchers demonstrate a robotic platform for delivering drugs in the human body July 25th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Environment

This new nanotech could help clean up Earth’s microplastics August 3rd, 2019

Black (nano)gold combat climate change July 5th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Aerospace/Space

Better microring sensors for optical applications May 10th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

VP Pence Announces Humans on Moon by 2024 April 2nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project