Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > What happens to magnetic nanoparticles once in cells?

© Laboratory MSC (CNRS/University of Paris Diderot)
© Laboratory MSC (CNRS/University of Paris Diderot)

Abstract:
Although magnetic nanoparticles are being used more and more in cell imaging and tissue bioengineering, what happens to them within stem cells in the long term remained undocumented. Researchers from CNRS, the Sorbonne Université, and universities Paris Diderot and Paris 13, have shown substantial degradation of these nanoparticles, followed in certain cases by the cells "re-magnetizing." This phenomenon is the sign of biosynthesis of new magnetic nanoparticles from iron released in the intracellular medium by the degradation of the first nanoparticles. Published in PNAS on February 11, 2019, this work may explain the presence of "natural" magnetism in human cells, and help us to envisage new tools for nanomedicine, thanks to this magnetism produced by the cells themselves.

What happens to magnetic nanoparticles once in cells?

Paris, France | Posted on February 21st, 2019

Magnetic nanoparticles are at the core of today's nanomedicine: they serve as imaging diagnosis agents, thermal anti-cancer agents, drug targeting agents, and tissue engineering agents. The question of their fate in cells, after they have accomplished their therapeutic mission, was not well understood.

To follow the journey of these nanoparticles in cells, researchers at the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot) and the Laboratoire de Recherche Vasculaire Translationnelle (INSERM/Université Paris Diderot/Université Paris 13), in collaboration with scientists from Sorbonne Université[1] have developed an original approach to nanomagnetism in living systems: first they incorporated magnetic nanoparticles in vitro in human stem cells. They then left them to differentiate and develop for one month, to observe them long term in the intracellular environment and to monitor their transformations.

By following the "magnetic fingerprint" of these nanoparticles in the cells, the researchers have shown that they were first being destroyed (cell magnetization falls) and releasing iron into the intracellular environment. Next, this "free" iron was stored in non-magnetic form in ferritin, the protein responsible for storing iron, or served as a base for the biosynthesis of new magnetic nanoparticles within the cell.

This phenomenon is known to occur in some bacteria, but a biosynthesis like this had never been shown in mammalian cells. This could explain the presence of magnetic crystals in humans, observed in the cells of diverse organs, particularly the brain. What is more, this iron storage in magnetic form could also be a way for the cell to "detoxify" over the long term to counter excess iron. From the point of view of nanomedicine, this biosynthesis open up a new path to the possibility of purely biological magnetic marking in cells.

###

[1] 1 In collaboration with researchers at the Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (CNRS/Sorbonne Université), IMPMC (CNRS/Sorbonne Université/MNHN/IRD), the Laboratoire Interfaces, Traitements, Organisation et Dynamique des Systèmes (CNRS/Université Paris Diderot).

####

For more information, please click here

Contacts:
Alexiane Agullo

33-144-964-390

Copyright © CNRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Cancer

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Nanomedicine

Better microring sensors for optical applications May 10th, 2019

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Nanobiotechnology

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project