Home > Press > Disordered crystals are promising for future battery technology
Abstract:
Tiny, disordered particles of magnesium chromium oxide may hold the key to new magnesium battery energy storage technology, which could possess increased capacity compared to conventional lithium-ion batteries, find UCL and University of Illinois at Chicago researchers.
The study, published today in Nanoscale, reports a new, scalable method for making a material that can reversibly store magnesium ions at high-voltage, the defining feature of a cathode.
While it is at an early stage, the researchers say it is a significant development in moving towards magnesium-based batteries. To date, very few inorganic materials have shown reversible magnesium removal and insertion, which is key for the magnesium battery to function.
"Lithium-ion technology is reaching the boundary of its capability, so it's important to look for other chemistries that will allow us to build batteries with a bigger storage capacity and a slimmer design," said co-lead author, Dr Ian Johnson (UCL Chemistry).
"Magnesium battery technology has been championed as a possible solution to provide longer-lasting phone and electric car batteries, but getting a practical material to use as a cathode has been a challenge."
One factor limiting lithium-ion batteries is the anode. Low-capacity carbon anodes have to be used in lithium-ion batteries for safety reasons, as the use of pure lithium metal anodes can cause dangerous short circuits and fires.
In contrast, magnesium metal anodes are much safer, so partnering magnesium metal with a functioning cathode material would make a battery smaller and store more energy.
Previous research using computational models predicted that magnesium chromium oxide (MgCr2O4) could be a promising candidate for Mg battery cathodes.
Inspired by this work, UCL researchers produced a ~5 nm, disordered magnesium chromium oxide material in a very rapid and relatively low temperature reaction.
Collaborators at the University of Illinois at Chicago then compared its magnesium activity with a conventional, ordered magnesium chromium oxide material ~7 nm wide.
They used a range of different techniques including X-ray diffraction, X-ray absorption spectroscopy and cutting-edge electrochemical methods to see the structural and chemical changes when the two materials were tested for magnesium activity in a cell.
The two types of crystals behaved very differently, with the disordered particles displaying reversible magnesium extraction and insertion, compared to the absence of such activity in larger, ordered crystals.
"This suggests the future of batteries might lie in disordered and unconventional structures, which is an exciting prospect and one we've not explored before as usually disorder gives rise to issues in battery materials. It highlights the importance of seeing if other structurally defective materials might give further opportunities for reversible battery chemistry" explained Professor Jawwad Darr (UCL Chemistry).
"We see increasing the surface area and including disorder in the crystal structure offers novel avenues for important chemistry to take place compared to ordered crystals.
Conventionally, order is desired to provide clear diffusion pathways, allowing cells to be charged and discharged easily - but what we've seen suggests that a disordered structure introduces new, accessible diffusion pathways that need to be further investigated," said Professor Jordi Cabana (University of Illinois at Chicago).
These results are the product of an exciting new collaboration between UK and US researchers. UCL and the University of Illinois at Chicago intend to expand their studies to other disordered, high surface area materials, to enable further gains in magnesium storage capability and develop a practical magnesium battery.
###
Funding for the project was provided by the Joint Center for Energy Storage Research, a US Department of Energy Innovation Hub, and the JUICED Energy Hub by the Engineering and Physical Sciences Research Council.
####
For more information, please click here
Contacts:
Rebecca Caygill
203-108-3846
Copyright © University College London
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Govt.-Legislation/Regulation/Funding/Policy
NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019
Sensitive sensor detects Down syndrome DNA February 14th, 2019
Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019
Possible Futures
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019
Materials/Metamaterials
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019
Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019
Sound and light trapped by disorder February 8th, 2019
Announcements
Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Helping smartphones hold their charge longer February 6th, 2019
Current generation via quantum proton transfer February 1st, 2019
Static electricity could charge our electronics: While common in everyday life, the science behind this phenomenon is not well understood January 25th, 2019
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |